Planetenbewegung in Sternsystemen

Binary Star Habitable Zones

Part 2

Topics overview

- 1. Definition of "Habitable Zone"
- 2. Static HZ
- 3. Dynamical HZ
- 4. Application to real systems

1. Definition of Habitable Zone

- Definition "Habitable Zone" (HZ): region around a (main-sequence) star, where an Earth-analogue planet with "not too thick" atmosphere can maintain liquid water on the surface
- Questions:
 - Single star ?
 - Terrestrial planet (minimum mass) ?
 - Atmosphere, composition, ... ?
 - Orbit dynamically stable orbit over long periods of time ?

Single Star HZ (SSHZ)

- Classical HZ (Kasting+ 1993): HZ limits for single star by runaway states ...
 - **Runaway greenhouse** = total evaporation of surface water
 - Maximum greenhouse = freeze-out of CO₂
- Parameters:
 - Stellar luminosity \rightarrow effective temperature T_{eff}
 - Spectral energy distribution \rightarrow effective insolation limits S_{in} , S_{out}
 - Solar constant S_{\odot} = 1368 W/m²

$$r_{in} = \sqrt{\frac{(L/L_{\odot})}{(S_{\rm in}/S_{\odot})}} = \sqrt{\Lambda_{\rm in}} \qquad r_{out} = \sqrt{\frac{(L/L_{\odot})}{(S_{\rm out}/S_{\odot})}} = \sqrt{\Lambda_{\rm out}}$$

HZ insolation thresholds

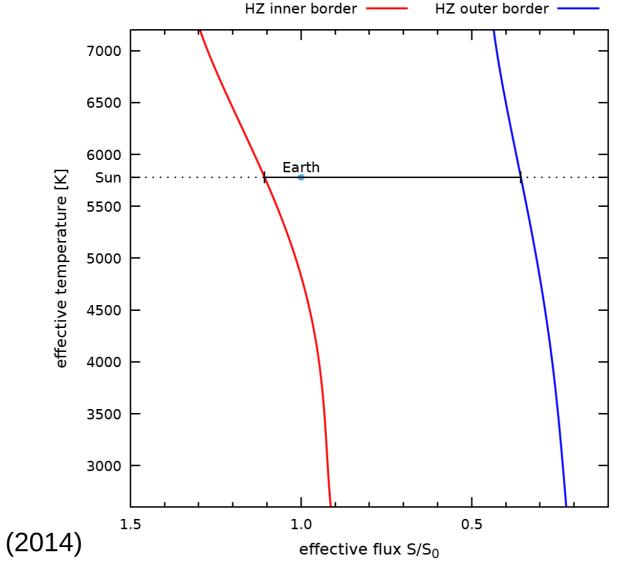
- Modify stellar luminosity L by spectral weights S: $\Lambda = L/S$
- Kopparapu+ (2014) \rightarrow effective insolation thresholds as functions of effective temperature and planet mass
- Model dependent coefficients (*a*,*b*,*c*,*d*)

$$S_{\text{eff}} = S_{\text{eff}}(T_{\text{eff}})$$

$$S_{\text{eff}} = S_{\text{eff},\odot} + a\tilde{T} + b\tilde{T}^2 + c\tilde{T}^3 + d\tilde{T}^4$$

$$\tilde{T} = T_{\text{eff}} - 5780 \text{ K}$$

HZ insolation thresholds



after: Kopparapu+ (2014)

2. Static HZ

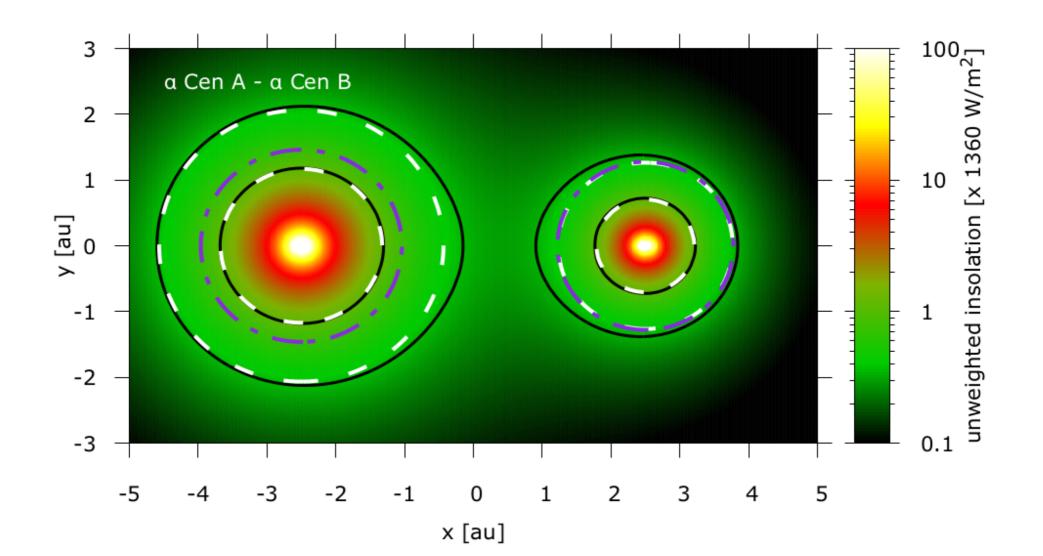
Radiative HZ (RHZ)

• Superposition of all radiation sources:

$$\sum_{i=1}^{N} \frac{\Lambda_i}{r_i^2} = 1$$

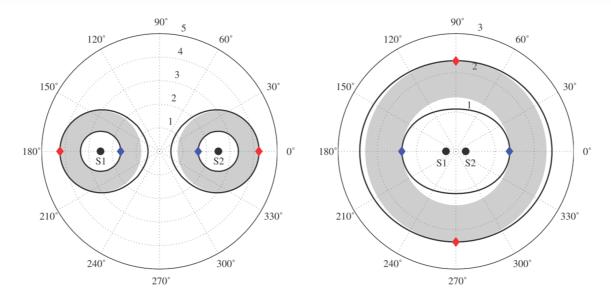
- Find locations (*x*,*y*,*z*) of constant insolation ("isophotes")
- In 2D: solve quartic equation in $r(\phi)$
- Definition of RHZ (Cuntz 2014, 2015): largest circular region (ring) to fit inside borders [r_{in} : r_{out}]

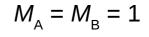
RHZ example for α Centauri

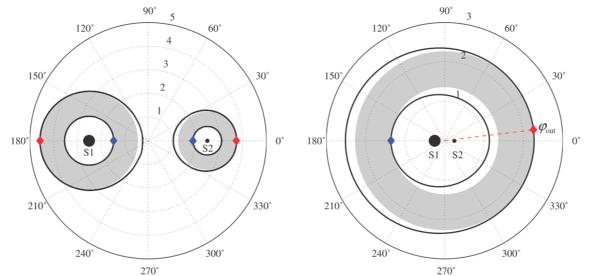


RHZ – circular binary

S-type



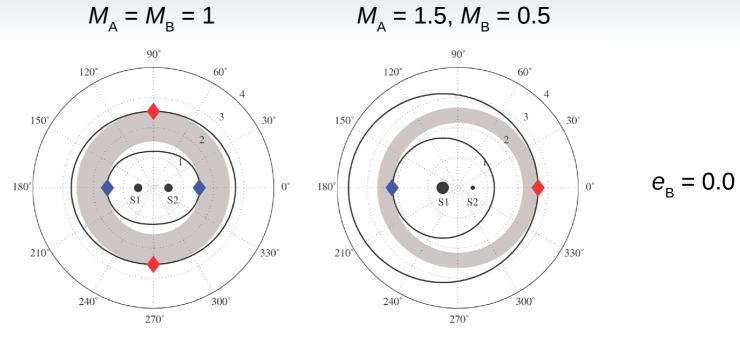


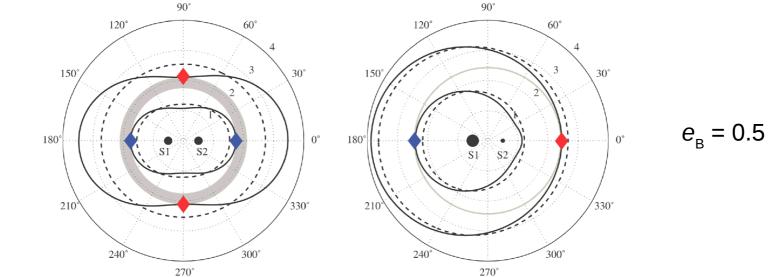


 $M_{\rm A} = 1.5, M_{\rm B} = 0.5$

Cuntz (2014)

RHZ – elliptic binary





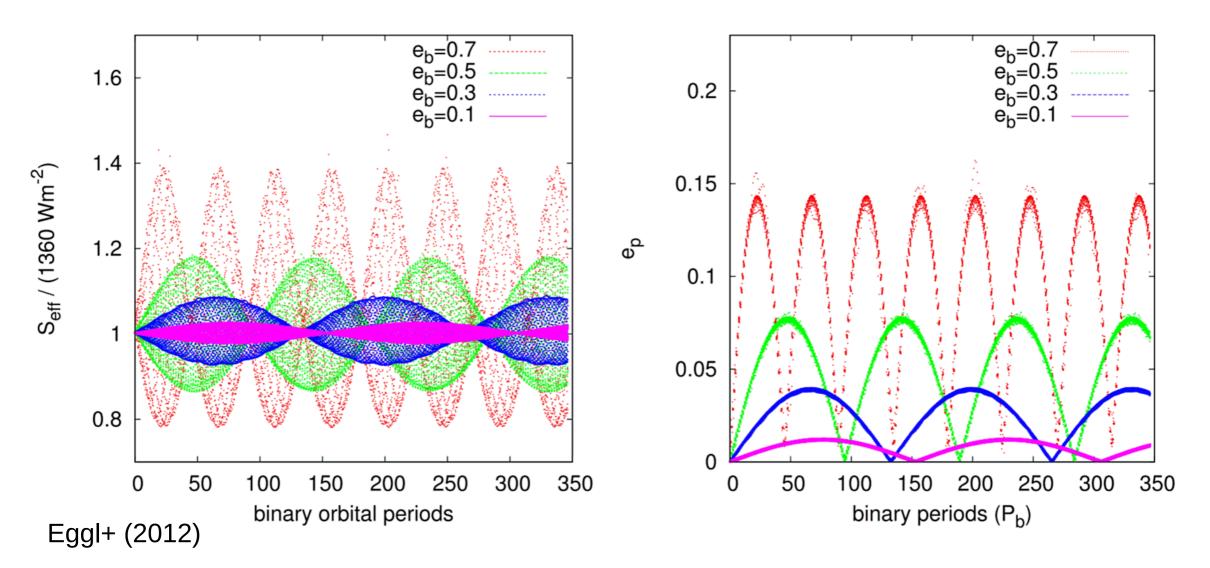
Cuntz (2015)

RHZ results

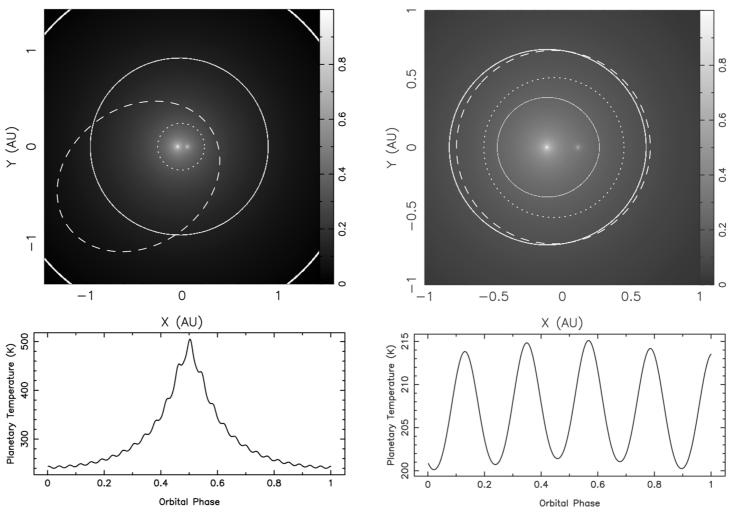
- S-type RHZ
 - RHZ \rightarrow SSHZ for stellar separation $d \rightarrow \infty$
 - RHZ shrinks with increasing binary eccentricity
 - Strongest deformation along line connecting stars
- P-type RHZ
 - RHZ \rightarrow SSHZ for stellar separation $d \rightarrow 0$
 - RHZ depends strongly on d
 - RHZ only exists for $\left(\frac{d}{2}\right)^2 \leq \Lambda_A + \Lambda_B$

3. Dynamical HZ

Insolation variation onto planet – S-type



Insolation variation onto planet – P-type



Kane & Hinkel (2013)

Figure 7. Top panel: the G2V–K5V binary system showing the HZ boundaries (solid lines), critical semimajor boundary (dotted line), and a planetary orbit (dashed line). The planetary orbit has a semimajor axis of a = 0.9 AU and an eccentricity of e = 0.6. Bottom panel: the equilibrium temperature of the planet as a function of planetary orbital phase. Phase 0.0 is at apastron and phase 0.5 is at periastron.

Figure 8. Top panel: the Kepler-16 system showing the HZ boundaries (solid lines), critical semimajor boundary (dotted line), and planetary orbit (dashed line). Bottom panel: the equilibrium temperature of the planet as a function of planetary orbital phase. Phase 0.0 is at apastron and phase 0.5 is at periastron.

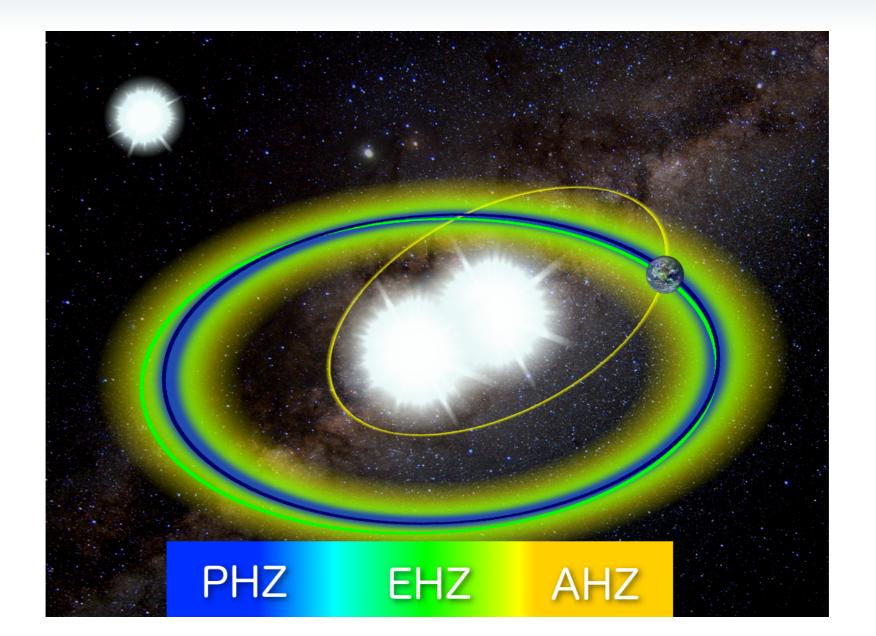
HZ + dynamics

- Insolation $S_{\text{eff}} = S_{\text{eff}}(r) \text{but } r = r(t)$
- Planet distance *r*(*t*) depends on eccentricity *e*
- Need to know time-evolution of *e*(*t*)
- Definitions (Eggl+, 2012):

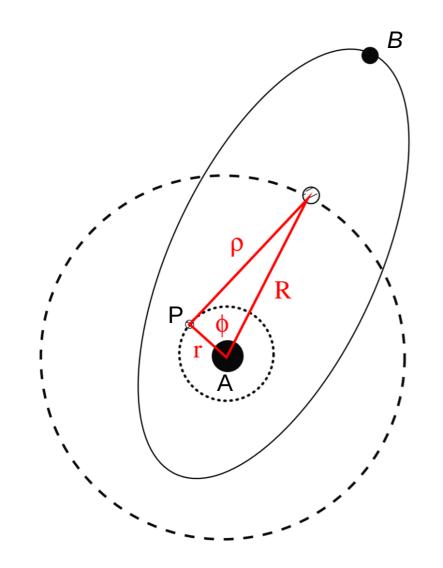
PHZ:
$$S_{\text{in}} \ge S_{\text{eff}} \ge S_{\text{out}} \quad \forall t$$

EHZ: $S_{\text{in}} \ge \langle S_{\text{eff}} \rangle_t + \sigma \land \langle S_{\text{eff}} \rangle_t - \sigma \ge S_{\text{out}}$
AHZ: $S_{\text{in}} \ge \langle S_{\text{eff}} \rangle_t \ge S_{\text{out}}$
 $\frac{\Lambda_A}{r_A^2(t)} + \frac{\Lambda_B}{r_B^2(t)} = 1$

"Dynamically Informed HZ"



PHZ limits



$$\begin{aligned} \text{PHZ}_{\text{in}} &: \frac{\Lambda_{A,\text{in}}}{q_p^2} + \frac{\Lambda_{B,\text{in}}}{(q_p - q_B)^2} \leq 1 \quad \dots \quad L_A > L_B \\ \text{PHZ}_{\text{in}} &: \frac{\Lambda_{A,\text{in}}}{Q_p^2} + \frac{\Lambda_{B,\text{in}}}{(Q_p - q_B)^2} \leq 1 \quad \dots \quad L_A < L_B \\ \text{PHZ}_{\text{out}} &: \frac{\Lambda_{A,\text{out}}}{Q_p^2} + \frac{\Lambda_{B,\text{out}}}{(Q_p + Q_B)^2} \geq 1 \quad \dots \quad L_A > L_B \\ q_p &= a_p (1 - e_p^{max}) \\ Q_p &= a_p (1 + e_p^{max}) \\ q_B &= a_B (1 - e_B) \\ Q_p &= a_p (1 + e_B) \end{aligned}$$

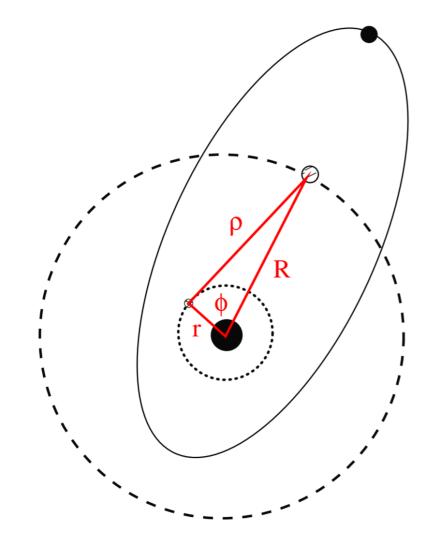
Maximum eccentricity

- Georgakarakos (2003): maximum eccentricity includes short period + secular contributions
- For planets with e(t=0) = 0

$$e_p^{max} = e_p^{sp} + e_p^{sec} = F(m_A, m_B, m_p, a_p, a_B, e_B)$$

 $e_p^{sec} \approx 2\epsilon = \frac{5}{2} \frac{a_p}{a_B} \frac{e_B}{1 - e_B^2}$

AHZ limits

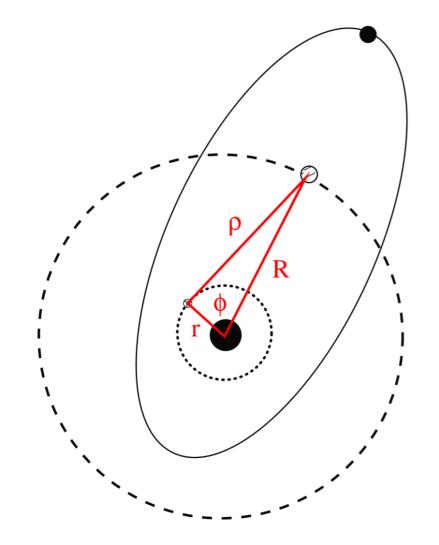


$$\begin{split} \text{AHZ}_{\text{in}} &: \frac{\Lambda_{A,\text{in}}}{r^2} + \frac{\Lambda_{B,\text{in}}}{R^2 - r^2} \leq 1\\ \text{AHZ}_{\text{out}} &: \frac{\Lambda_{A,\text{out}}}{r^2} + \frac{\Lambda_{B,\text{out}}}{R^2 - r^2} \geq 1\\ &r = a_p (1 - \langle e^2 \rangle)\\ &R = a_B (1 - e_B^2) \end{split}$$

Time-averaged squared eccentricity Georgakarakos (2003, 2005)

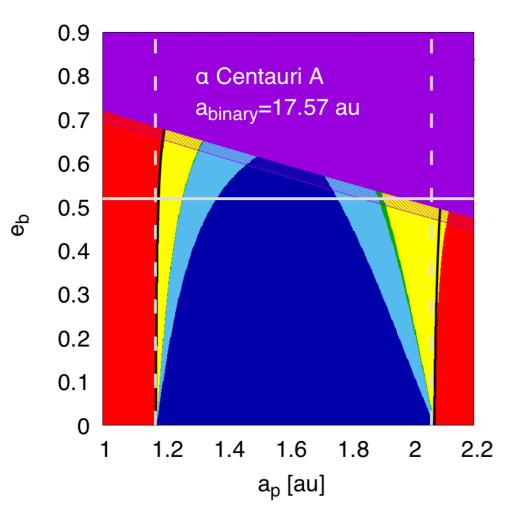
$$\begin{split} \overline{e_{in}^2} &= \frac{m_3^2}{M^2} \frac{1}{X^4 (1-e^2)^{9/2}} \left\{ \frac{43}{8} + \frac{129}{8} e^2 + \frac{129}{64} e^4 + \frac{1}{(1-e^2)^{3/2}} \left(\frac{43}{8} + \frac{645}{16} e^2 + \frac{1935}{64} e^4 + \frac{215}{128} e^6 \right) + \frac{1}{X^2 (1-e^2)^3} \right. \\ & \times \left[\frac{365}{18} + \frac{44327}{144} e^2 + \frac{119435}{192} e^4 + \frac{256105}{1152} e^6 + \frac{68335}{9216} e^8 \right. \\ & + \frac{1}{(1-e^2)^{3/2}} \left(\frac{365}{18} + \frac{7683}{16} e^2 + \frac{28231}{16} e^4 + \frac{295715}{192} e^6 + \frac{2415}{8} e^8 + \frac{12901}{2048} e^{10} \right) \right] \\ & + \frac{1}{X(1-e^2)^{3/2}} \left[\frac{61}{3} + \frac{305}{2} e^2 + \frac{915}{8} e^4 + \frac{305}{48} e^6 + \frac{1}{(1-e^2)^{3/2}} \left(\frac{61}{3} + \frac{854}{3} e^2 + \frac{2135}{4} e^4 + \frac{2135}{12} e^6 + \frac{2135}{384} e^8 \right) \right] \\ & + m_*^2 X^{2/3} (1-e^2) \left[\frac{225}{256} + \frac{3375}{1024} e^2 + \frac{7625}{2048} e^4 + \frac{29225}{8192} e^6 + \frac{48425}{16384} e^8 + \frac{825}{2048} e^{10} \right. \\ & + \frac{1}{(1-e^2)^{3/2}} \left(\frac{225}{256} + \frac{2925}{1024} e^2 + \frac{775}{256} e^4 + \frac{2225}{8192} e^6 + \frac{25}{512} e^8 \right) \right] \\ & + m_*^2 \frac{1}{X^{4/3} (1-e^2)^2} \left[\frac{8361}{4096} + \frac{125415}{8192} e^2 + \frac{376245}{2048} e^4 + \frac{292635}{16384} e^6 + \frac{292635}{524288} e^8 \right] \right\} + 2 \left(\frac{C}{B-A} \right)^2. \end{split}$$

EHZ limits



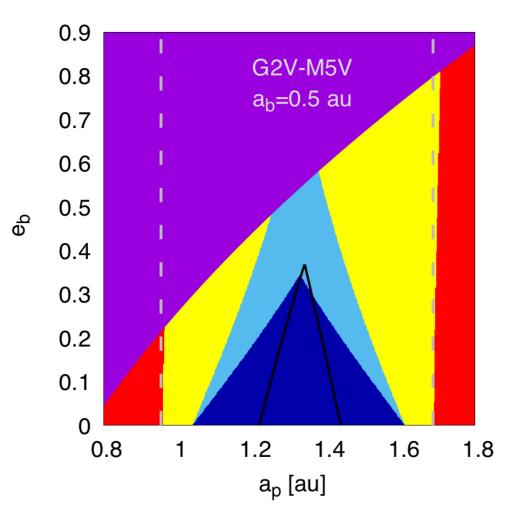
$$\begin{aligned} \text{EHZ}_{\text{in}} &: \frac{\Lambda_{A,\text{in}}}{r^2} + \frac{\Lambda_{B,\text{in}}}{R^2 - r^2} + \sigma_{\text{in}} \leq 1\\ \text{AHZ}_{\text{out}} &: \frac{\Lambda_{A,\text{out}}}{r^2} + \frac{\Lambda_{B,\text{out}}}{R^2 - r^2} - \sigma_{\text{out}} \geq 1\\ \sigma^2 &= \langle S_{tot}^2 \rangle_t - \langle S_{tot} \rangle_t^2 \end{aligned}$$

Application – S-type HZs



- Unstable
- Non-HZ
- AHZ
- EHZ
- PHZ
- SSHZ
- RHZ

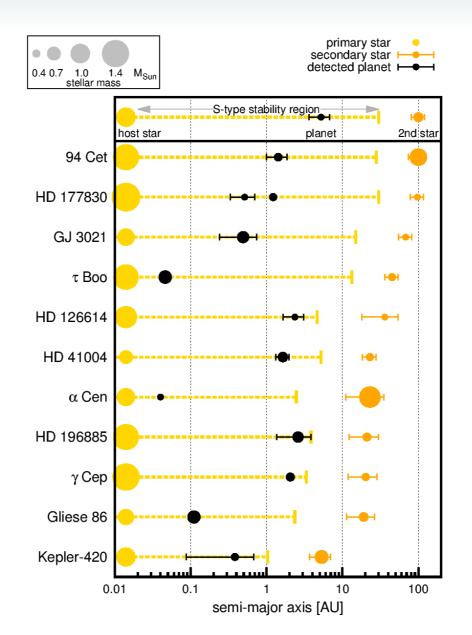
Application – P-type HZs



- Unstable
- Non-HZ
- AHZ
- EHZ
- PHZ
- SSHZ
- RHZ

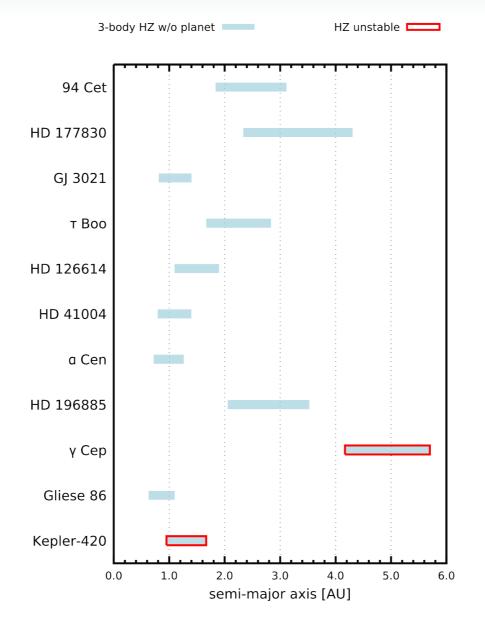
4. Application to real systems

Binary star exoplanet systems

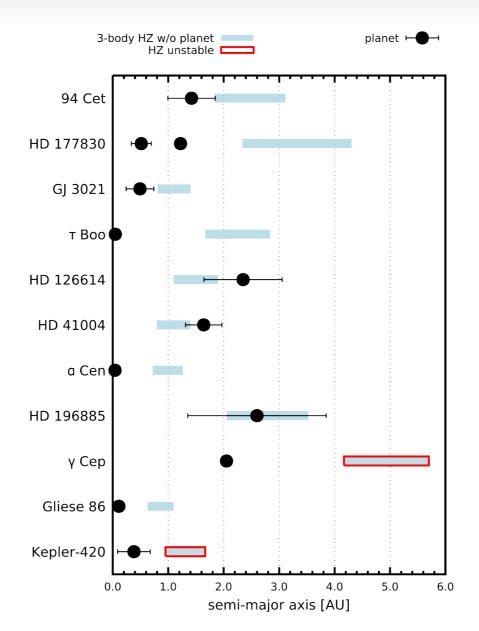


Bazsó+ (2017)

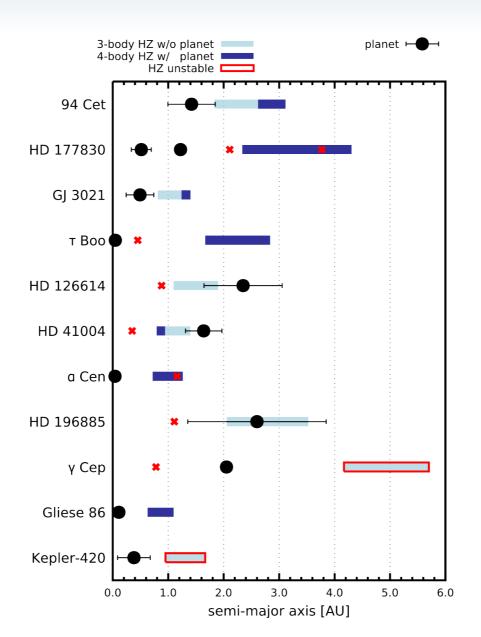
Application to exoplanet systems



Application to exoplanet systems

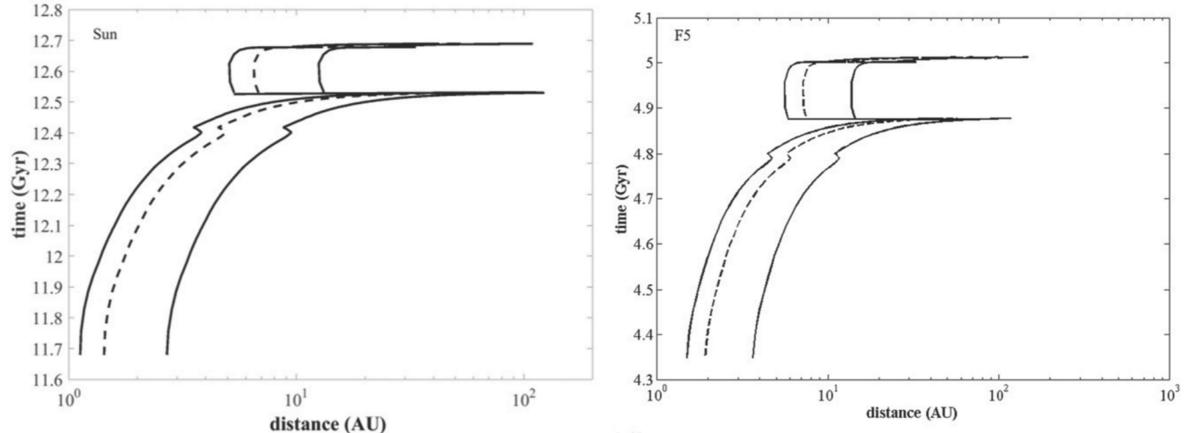


Application to exoplanet systems



Post-main-sequence star HZ

- Stellar evolution on RGB and AGB
- Increase in luminosity and HZ distance



Summary

- Concepts:
 - Single star HZ
 - Radiative HZ
 - HZ involving dynamics (PHZ, EHZ, AHZ)

• HZ types:

- Static vs Dynamical
- P-type vs S-type
- Other points:
 - Eccentricities (planet & binary)
 - HZ evolution in time (stellar luminosities)

References

- Bazsó, Pilat-Lohinger, Eggl, Funk, Bancelin, Rau (2017), MNRAS 466, 1555–1566
- Cuntz (2014), ApJ 780:14
- Cuntz (2015), ApJ 798:101
- Eggl, Pilat-Lohinger, Georgakarakos, Gyergyovits, Funk (2012), ApJ 752:74
- Georgakarakos (2003), MNRAS 345, 340–348
- Kane, Hinkel (2013), ApJ 762:7
- Kasting, Whitmire, Reynolds (1993), Icarus 101, 108–128
- Kopparapu, Ramirez, SchottelKotte, Kasting, Domagal-Goldman, Eymet (2014), ApJL 787:L29
- Ramirez & Kaltenegger (2016), ApJ 823:6