Planetenbewegung in Sternsystemen

The Effect of Resonances

Part 2

Topics overview

- 1. Definition and examples of "resonances"
- 2. Disturbing function
- 3. Mean-motion resonance (MMR)
- 4. Secular resonance (SR) continued
- 5. Kozai-Lidov resonance
- 6. Evection resonance
- 7. Other resonances

3. Mean-motion resonance – recap

- MMR \rightarrow resonance between two orbital frequencies $q n_1 - p n_2 = 0$
- Critical angle \rightarrow small divisor
- Resonance location:
 simple formula

$$a_{\rm res} = a' \left(\frac{n'}{n}\right)^{2/3} \left(\frac{M+m}{M+m'}\right)^{1/3}$$

4. Secular resonance – recap

- SR → resonance between two orbital precession frequencies
- Precession of line of apsides \rightarrow freq. g
- Precession of line of nodes \rightarrow freq. s
- Time-scale $T_{sec} >> T_{rev}$

Perryman (2011)

SR – secular variables

- Laplace-Lagrange variables
- Decoupling of eccentricity / inclination (to lowest order) in averaged disturbing function

$$h = e \sin(\omega + \Omega) \qquad p = \sin(i/2) \sin \Omega$$
$$k = e \cos(\omega + \Omega) \qquad q = \sin(i/2) \cos \Omega$$

SR – solutions for massive bodies

- Equations of motion in variables (*h*,*k*) = system of linear differential equations
- Secular eigenfrequencies = eigenvalues g_i of matrix A
- Laplace coefficients $b_n^{(k)}(\alpha)$

 $\mathbf{h} = \mathbf{A}\mathbf{k}$ $\mathbf{k} = -\mathbf{A}\mathbf{h}$ $A_{j,j} = +\frac{1}{4}n_j \sum_{k=1}^{N} \frac{m_k}{M+m_j} \alpha_{j,k}^2 b_{3/2}^{(1)}(\alpha_{j,k})$ $A_{j,k} = -\frac{1}{4}n_j \frac{m_k}{M + m_j} \alpha_{j,k}^2 b_{3/2}^{(2)}(\alpha_{j,k})$ $\det(\mathbf{A} - q\mathbf{1}) = 0$

SR – solutions for massive bodies

Matrix of eigenvectors to eigenvalues for matrix A

SR – solutions for massive bodies

Python notebook for demonstration

- Example 1: Outer Solar System
- Example 2: Gamma Cephei
- Example 3: Jupiter in a "wide" binary star system

SR – test particle

- Disturbing function for a TP with *N* massive perturbers
- Proper frequency g of TP
- General solution for TP in (h,k) variables
- Small divisor for $g g_i \approx 0$
- Proper (free) + forced eccentricity / inclination

$$\mathcal{R} = n a^{2} \left[\frac{1}{2} g \left(h^{2} + k^{2} \right) + \sum_{j=1}^{N} A_{j} \left(h h_{j} + k k_{j} \right) \right]$$
$$g = \frac{1}{4} n \sum_{j=1}^{N} \frac{m_{j}}{M} \alpha_{j}^{2} b_{3/2}^{(1)}(\alpha_{j})$$
$$h(t) = e_{\text{free}} \sin(gt + \varphi) - \sum_{i=1}^{N} \frac{\nu_{i}}{g - g_{i}} \sin(g_{i}t + \varphi_{i})$$
$$= h_{\text{free}}(t) + h_{0}(t)$$
$$k(t) = e_{\text{free}} \cos(gt + \varphi) - \sum_{i=1}^{N} \frac{\nu_{i}}{g - g_{i}} \cos(g_{i}t + \varphi_{i})$$
$$= k_{\text{free}}(t) + k_{0}(t)$$
$$e_{\text{forced}} = \sqrt{h_{0}^{2} + k_{0}^{2}}$$
$$i_{\text{forced}} = \sqrt{p_{0}^{2} + q_{0}^{2}}$$

SR – proper frequency g

0.10 0.08 frequency g [deg/year] 0.06 0.04 0.02 0.00 15 20 35 5 10 25 30 0 semi-major axis [AU]

Variation of frequency g in Solar System

SR – free / forced eccentricity

SR – forced eccentricity

Forced eccentricity for Gamma Cephei 1.0 $e_{GP} = 0.05$ $e_{GP} = 0.10$ $e_{GP} = 0.15$ 0.8 $e_{GP} = 0.20$ maximum eccentricity $e_{GP} = 0.25$ 0.6 0.4 0.2 0.0 0.6 0.0 0.2 0.4 0.8 1.0 1.2 1.4 1.6

initial semi-major axis

5. Kozai-Lidov resonance (KL)

KL – dynamical setting

- Restricted 3-body problem
- Outer perturber *m*' on Keplerian orbit
- Distances *a* << *a*', masses *m* << *m*', mutual inclination

KL – theoretical concepts

- Kozai-Lidov (KL) resonance \rightarrow type of secular resonance
- Resonance between orbital precession frequencies of small body under effect of perturber(s)

$$\dot{\widetilde{\omega}} - \dot{\Omega} = 0 \Rightarrow \dot{\omega} = 0$$

- Libration of argument of pericenter ω about 90° / 270°
- Coupling between eccentricity / inclination oscillations
- Periodic exchange between *e*(*t*) & *i*(*t*)

KL – a note on Delaunay variables

Definition:

 $l = M \qquad L = \sqrt{\mu a}$ $g = \omega \qquad G = \sqrt{\mu a}\sqrt{1 - e^2} = L\sqrt{1 - e^2}$ $h = \Omega \qquad H = \sqrt{\mu a}\sqrt{1 - e^2}\cos(i) = G\cos(i)$ $\mu = GM^3/(M + m)^2$

 $\begin{array}{ll} \begin{array}{ll} \text{Canonical system} & \frac{\mathrm{d}M}{\mathrm{d}t} = \frac{\partial\mathcal{H}}{\partial L} & \frac{\mathrm{d}L}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial M} \\ \\ & \frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{\partial\mathcal{H}}{\partial G} & \frac{\mathrm{d}G}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial\omega} \\ \\ & \frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{\partial\mathcal{H}}{\partial H} & \frac{\mathrm{d}H}{\mathrm{d}t} = -\frac{\partial\mathcal{H}}{\partial\Omega} \end{array}$

KL – Hamiltonian

- 1 degree-of-freedom: only depends on (*G*,*g*)
- Constant of motion: Delaunay H = H(a,e,i)
- Eccentricity & inclination coupled via H = const
- 2 extremal values:
 - H(a, e, i=0) $\rightarrow e_{\max}$
 - H(a, e=0, i) $\rightarrow i_{max}$
- Analytical approximate Hamiltonian

$$K_0 = \sum_k \left(\frac{m_k}{16a_k^3}\right) a^2 \left[(2+3e^2)(3\cos^2(i)-1) + 15e^2\sin^2(i)\cos(2\omega) \right]$$

KL – phase space

Morbidelli (2002)

KL – dynamical mechanism

- At critical inclination $i_{crit} \approx 39.2^{\circ}$ origin unstable fixed point
- (*h*,*k*) space: libration of ω about 90° / 270° fixed points
- Animation

KL – applications

- Artificial Earth satellites
- Irregular natural satellites (Brozovic,+ 2009, 2011, 2017)
- Exoplanets: Hot Jupiters, mis-aligned planets

HD 41004 AB: $e_B = 0.2$, $e_{GP} = 0.2$

6. Evection resonance (LLER)

LLER – ingredients

- Multi-planet S-type binary star system
 - Host star m_A , secondary star m_B
 - 2 planets m_1 , m_2 with $a_1 < a_2 << a_B$
- Star B on fixed Keplerian orbit
- Co-planar system

LLER – theoretical concepts

- Laplace-Lagrange evection resonance (LLER) (Touma & Sridhar 2015) → resonance between orbital precession frequency g and orbital frequency n
- Critical angle $\Phi_{res} = \widetilde{\omega} n_B t$
- Connection to lunar evection resonance

LLER – Hamiltonian

- $H_{sec} = H_{LL} + H_{Bin} + H_{NL}$
- H_{LL} time independent
- H_{Bin} time-dependent periodic forcing
- H_{NL} non-linear higher order terms
- 3 LL modes (frequencies): ω_1 , ω_2 , $(\omega_1 + \omega_2)/2$
- Coupling of $n_{\rm B}$ with modes

LLER – simulation

Without MMR

With MMR

Figure 1 | **Capture into the LLER.** The fiducial *N*-wire experiment was performed with forced exponential migration¹⁷, $a_{out}(t) = a_{out}^i \exp[t/\tau]$, with $a_{out}^i = 10 \text{ AU}$ and $\tau = 10^4 T_{b}$. **a**, Growth of e_{out} when it is captured in the migrating LLER. The dashed line is the prediction from the analytical fourth-order theory presented in Supplementary Information A. **b**, ϕ_{res} transitions from circulation to libration around 90° when captured in LLER.

Touma & Sridhar (2015)

LLER – phase space

Figure S4: Phase Space with Migrating Planet. Isocontours of $H_{\rm nf}$ at different times showing bifurcations of equilibria and the emergence of islands where capture is probable. Note: both ξ and η have been rescaled by a factor $\sqrt{m_2\sqrt{GM_Aa_2}}$, in order to turn them into eccentricity–like variables. (a) At $a_2 = 11$ AU the origin is stable with circulating orbits around it. (b) The origin goes unstable at $a_2 = 11.88$ AU and two LLER islands appear. (c) At $a_2 = 11.894$ AU the origin is about to go stable again. (d) At $a_2 = 13$ AU we are past the second bifurcation; there is an inner circulating zone surrounded by two libration lobes.

Touma & Sridhar (2015)

LLER – single planet

LLER – non-linear resonances

LLER – alternative mechanism

- No planetary migration
- Changing orbit of "wide" binary ($a_{\rm B}$ > 1000 AU) by galactic tide and passing stars

Summary

• Kozai-Lidov resonance:

- Secular resonance between orbital precession frequencies
- Periodic exchange between *e*(*t*) & *i*(*t*)

• Evection resonance:

- Secular resonance between orbital precession freq. and orbital freq. of a binary star
- Important for multi-planet systems

• Other resonances:

- Secondary resonances

References

- Brozovic, Jacobson (2009), AJ 137, 3834– 3842
- Brozovic, Jacobson, Sheppard (2011), AJ 141, 135B
- Brozovic, Jacobson, Robert (2017), AJ 153, 147B
- Kaib, Raymond, Duncan (2013), Nature 493, 381–384
- Kinoshita, Nakai (1999), CMDA 75, 125– 147
- Kozai (1962), AJ 67, 591–598

- Morbidelli (2002), Modern Celestial Mechanics, Taylor & Francis
- Murray, Dermott (1999) Solar System Dynamics, Cambridge Univ. Press
- Perryman (2011), The Exoplanet Handbook, Cambridge Univ. Press
- Pilat-Lohinger, Bazso, Funk (2016), AJ 152, 139
- Touma, Wisdom (1998), AJ 115, 1653–1663
- Touma, Sridhar (2015), Nature 524, 439– 441