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(@ Ordinary Differential Equations I

@ A few odd ideas...

° Sympl... Symplecti... Symplectic what? - Structure Preserving
Algorithms

° What really happens...



A long long time ago...

Two " philosophies”



Geometry-based (Collocation) Taylor-based




Collocation |Tay|or-based

Newton-Cotes | Runge-Kutta




Bulirsch-Stoer Method
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Fig. 2: Bulirsch-Stoer method. The results R, after a time-step 7 are sampled
with different numbers of sub-steps ;”-. These results are seen as a function of the
number of sub-steps, and will finally be extrapolated to a value R, that represents
- in principle - the solution of a differential equation calculated with a (sub-)stepsize
of 7, = 0.




Adams - Bashforth - Moulton - Predictor - Corrector
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Figure 9.10 Integration over [#., t—1] in the Adams-Bashforth method.

ref: John H. Mathews



Adams-Bashforth-Moulton Method

The Adams-Bashforth-Moulton predictor-corrector method is a multistep method de-
rived from the fundamental theorem of calculus:

teg1
8] Y1) = y (@) +f f, y(o)dr.
e
The predictor uses the Lagrange polynomial approximation for f(z, y(r)) based
on the points (t¢—3, fk—3), (tk—2, fk—2), (tk—1, fk—1), and (t, fk). It is integrated over

the interval [#, fx4+1] in (1). This process produces the Adams-Bashforth predictor:

h
(2) Pr+1 = Yk + ﬂ(—9fk—3 + 37 fi—2 — 59 fi—1 + 55 ).



The corrector is developed similarly. The value pj4; just computed can now be
used. A second Lagrange polynomial for f(z, y(r)) is constructed, which is based
on the points (#x—2, fr—2), (-1, fk—1), (. fi), and the new point (fx11. fr+1) =
(tx+1, f(tk+1, Pk+1)). This polynomial is then integrated over [fg, t;4 ], producing
the Adams-Moulton corrector:

h
(3) Yert = Ve + 57 (fima = S fet +19fi + 9 firn).

Figure 9.10 shows the nodes for the Lagrange polynomials that are used in developing
formulas (2) and (3), respectively.
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Error Estimation and Correction

Ordinary The error terms for the numerical integration formulas used to obtain both the predictor
g"ffe'e_"tia'” and corrector are of the order O(hs). The L. T.E. for formulas (2) and (3) are

quations

251 (5 5 R .
A few odd 4 Y(tg1) — Prs1 = —y D (errDh (L.T.E. for the predictor),
ideas.. 720
—19
Sympl... (5 Y(tg1) — Yey1 = y(s)(dk+1)h5 (L.T.E. for the corrector).
Symplecti... 720
Symplectic . 5 . .
what? - Suppose that A is small and y( ’(!) is nearly constant over the interval; then the
Structure terms involving the fifth derivative in (4) and (5) can be eliminated, and the result is
Preserving
Algorithms —19
(6) Y1) = Vi1 & o= (Vk+1 — Pr+1)-

What really 270
happens.

The importance of the predictor-corrector method should now be evident. For-
mula (6) gives an approximate error estimate based on the two computed values pj1
and yi4 and does not use y(s)(r)
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Hamiltonian Mechanics |

H(q,p,t) =T(q,p,t) +U(q,p,t)

y — aH(q,p,t) — aH(Q7p7t)
q= ap p= dq



ad _ 9H
dt — ot

OH dH

W=0—>ﬂ=0—>H=const




Hamiltonian Mechanics |l




Example: Symplectic Euler-Cromer

_ oOH
Pn+1 = Pn — ha_q|pn+1,€In

dn+1 = QGn + h’ |pn+17Qn



2

2
H(q,p) =5 + k%

Example: Symplectic Euler-Cromer for the Harmonic Oscillator
pn—i-l:pn_h'k'Qn

qn+1 = qn + h - Pn+1



Symplectic Structure

7= ()

a symplectic algorithm keeps J intact

MTIM =J



M is the Jacobian of the flow ¢(Z,t) of an ODE

VA A S A

Fig. 2.2. Symplecticity of the Stirmer/Verlet method for a separable
Hamiltonian.



Numerical flow ¢(Z, [ty, tn+1]) for a mapping

= 2 = () = ()

Oqn+1  Oqny1

Adn 'Pn
Opnt1  OPnt1
9qn Opn,



detM = 1 — phase-space volume conserved!
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Fig. 1.3. The phase space vector field split into two fields
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Hamilton’s equations can be rewritten using Poisson's
differential operator Dyy.

7={Z H(2)}

DyZz

0.
Il

with



Poisson brackets
o0F 0G  OF 0G
F —
{ ’ G} Z (6% Op; 8pz 8%)
The formal solution

Z(h) = P (0)



D1 Dy _ ((Dp+Dy)+ Dy, Dul+5 (D, [Dr, Dyl
with
[Dr, Dy| = DrDy — Dy Dr

expansion with coefficients a* and b’ to cancel out unwanted
terms containing commutators up to O(h¥*1).

k+1 k . .
eh(DT+DU) O(h= ) H ealhDTeblhDU

=1



ehDH — eh(DT+DU)

H=T+U
DT hDy _ hDg

solving not my origninal but a close by Hamiltonian...

H=T+U + g[T, Ul + ?—;([T, [T, U] — [U,[T,U]]) + ...



Thank you for your attention
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