Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Symplecti... Symplectic what? -Structure Preserving

What really happens...

Numerical Integration ODEs II

 $\mathsf{S.}\ \mathsf{Eggl}^1$

¹Institute for Astronomy, University of Vienna, Vienna, Austria.

Practical in numerical Astronomy Vienna Mai 2010

Outline

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Symplecti. Symplectic Symplectic what? -Structure Preserving Algorithms

What really happens...

- 1 Ordinary Differential Equations II
- 2 A few odd ideas...
- 3 Sympl... Symplecti... Symplectic what? Structure Preserving Algorithms
- 4 What really happens...

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations II

A few odd ideas...

Sympl... Symplectic. Symplectic what? -Structure Preserving Algorithms

What really happens...

A long long time ago...

Two "philosophies"

Algorithm Types

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations II

A few odd ideas...

Sympl... Symplectic. Symplectic what? -Structure Preserving Algorithms

What really happens...

Geometry-based (Collocation)

Taylor-based

Algorithm Types II

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Sympl... Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

Collocation	Taylor-based
Newton-Cotes	Runge-Kutta

A few odd ideas... Extrapolation

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Symplectic Symplectic what? -Structure Preserving Algorithms

What really happens...

Bulirsch-Stoer Method

Fig. 2: Bulirsch-Stoer method. The results R_m after a time-step τ are sampled with different numbers of sub-steps, $\frac{\tau}{n_m}$. These results are seen as a function of the number of sub-steps, and will finally be extrapolated to a value R_{∞} , that represents - in principle - the solution of a differential equation calculated with a (sub-)stepsize of $\tau_m = 0$.

A few odd ideas... Predictor Corrector

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Symplectic Symplectic what? -Structure Preserving

What really

Adams - Bashforth - Moulton - Predictor - Corrector

(a) The four nodes for the Adams-Bashforth predictor (extrapolation is used)

(a) The four nodes for the Adams-Moulton corrector (interpolation is used)

Figure 9.10 Integration over $[t_k, t_{k-1}]$ in the Adams-Bashforth method.

ref: John H. Mathews

Predictor Corrector II

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Sympl... Symplectic Symplectic what? -Structure Preserving Algorithms

What really happens...

Adams-Bashforth-Moulton Method

The Adams-Bashforth-Moulton predictor-corrector method is a multistep method derived from the fundamental theorem of calculus:

(1)
$$y(t_{k+1}) = y(t_k) + \int_{t_k}^{t_{k+1}} f(t, y(t)) dt.$$

The predictor uses the Lagrange polynomial approximation for f(t, y(t)) based on the points $(t_{k-3}, f_{k-3}), (t_{k-2}, f_{k-2}), (t_{k-1}, f_{k-1}),$ and (t_k, f_k) . It is integrated over the interval $[t_k, t_{k+1}]$ in (1). This process produces the Adams-Bashforth predictor:

(2)
$$p_{k+1} = y_k + \frac{h}{24}(-9f_{k-3} + 37f_{k-2} - 59f_{k-1} + 55f_k).$$

Predictor Corrector III

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Sympl... Symplectic Symplectic what? -Structure Preserving Algorithms

What really happens...

The corrector is developed similarly. The value p_{k+1} just computed can now be used. A second Lagrange polynomial for f(t, y(t)) is constructed, which is based on the points (t_{k-2}, f_{k-2}) , (t_{k-1}, f_{k-1}) , (t_k, f_k) , and the new point $(t_{k+1}, f_{k+1}) = (t_{k+1}, f(t_{k+1}, p_{k+1}))$. This polynomial is then integrated over $[t_k, t_{k+1}]$, producing the Adams-Moulton corrector:

(3)
$$y_{k+1} = y_k + \frac{h}{24}(f_{k-2} - 5f_{k-1} + 19f_k + 9f_{k+1}).$$

Figure 9.10 shows the nodes for the Lagrange polynomials that are used in developing formulas (2) and (3), respectively.

Predictor Corrector IV

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Sympl... Symplectic... Symplectic what? -Structure Preserving Algorithms

What really happens...

Error Estimation and Correction

The error terms for the numerical integration formulas used to obtain both the predictor and corrector are of the order $O(h^5)$. The L.T.E. for formulas (2) and (3) are

(4)
$$y(t_{k+1}) - p_{k+1} = \frac{251}{720} y^{(5)}(c_{k+1}) h^5$$
 (L.T.E. for the predictor),

(5)
$$y(t_{k+1}) - y_{k+1} = \frac{-19}{720} y^{(5)} (d_{k+1}) h^5$$
 (L.T.E. for the corrector).

Suppose that h is small and $y^{(5)}(t)$ is nearly constant over the interval; then the terms involving the fifth derivative in (4) and (5) can be eliminated, and the result is

(6)
$$y(t_{k+1}) - y_{k+1} \approx \frac{-19}{270} (y_{k+1} - p_{k+1}).$$

The importance of the predictor-corrector method should now be evident. Formula (6) gives an approximate error estimate based on the two computed values p_{k+1} and y_{k+1} and does not use $y^{(5)}(t)$.

Structure Preserving Algorithms I

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd

Sympl... Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

Hamiltonian Mechanics I

$$H(q,p,t) = T(q,p,t) + U(q,p,t) \label{eq:hamiltonian}$$

$$\dot{q} = \frac{\partial H(q,p,t)}{\partial p}$$
 $\dot{p} = -\frac{\partial H(q,p,t)}{\partial q}$

Structure Preserving Algorithms II

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations II

A few odd ideas...

Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

Neat...

$$\frac{dH}{dt} = \frac{\partial H}{\partial t}$$

$$\frac{\partial H}{\partial t}=0 \rightarrow \frac{dH}{dt}=0 \rightarrow H=const$$

Structure Preserving Algorithms III

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

Hamiltonian Mechanics II

$$\vec{z} = \begin{pmatrix} \vec{q} \\ \vec{p} \end{pmatrix}$$

$$\dot{\vec{z}} = J \cdot \vec{\nabla} H(\vec{z})$$

Structure Preserving Algorithms IV

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd

Sympl... Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

Example: Symplectic Euler-Cromer

$$p_{n+1} = p_n - h \frac{\partial H}{\partial q}|_{p_{n+1}, q_n}$$

$$q_{n+1} = q_n + h \frac{\partial H}{\partial p}|_{p_{n+1}, q_n}$$

Structure Preserving Algorithms V

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd

Sympl... Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

$$H(q,p) = \frac{p^2}{2} + k \frac{q^2}{2}$$

Example: Symplectic Euler-Cromer for the Harmonic Oscillator

$$p_{n+1} = p_n - h \cdot k \cdot q_n$$

$$q_{n+1} = q_n + h \cdot p_{n+1}$$

Structure Preserving Algorithms VI

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations II

A few odd ideas...

Sympl... Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

Symplectic Structure

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$

a symplectic algorithm keeps ${\cal J}$ intact

$$M^T J M = J$$

Structure Preserving Algorithms VII

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd

Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

M is the Jacobian of the flow $\varphi(\vec{z},t)$ of an ODE

Fig. 2.2. Symplecticity of the Störmer/Verlet method for a separable Hamiltonian.

Structure Preserving Algorithms VIII

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd

Sympl... Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

Numerical flow $\varphi(\vec{z}, [t_n, t_{n+1}])$ for a mapping

$$\vec{z}_n \rightarrow \vec{z}_{n+1} = \begin{pmatrix} q_n \\ p_n \end{pmatrix} \rightarrow \begin{pmatrix} q_{n+1} \\ p_{n+1} \end{pmatrix}$$

$$M = \begin{pmatrix} \frac{\partial q_{n+1}}{\partial q_n} & \frac{\partial q_{n+1}}{\partial p_n} \\ \frac{\partial p_{n+1}}{\partial q_n} & \frac{\partial p_{n+1}}{\partial p_n} \end{pmatrix}$$

Structure Preserving Algorithms IX

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

$det M = 1 \rightarrow \text{phase-space volume conserved!}$

Howto? Splitting Methods

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd

Sympl... Symplectic... Symplectic what? -Structure Preserving Algorithms

What really happens...

Fig. 1.3. The phase space vector field split into two fields

Howto? Splitting Methods II

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations II

A few odd

Sympl... Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

$$\varphi_t^{[1]} : \left\{ \begin{array}{l} q_1 = q_0 + t \cdot v_0 \\ v_1 = v_0 \end{array} \right. \qquad \varphi_t^{[2]} : \left\{ \begin{array}{l} q_1 = q_0 \\ v_1 = v_0 + t \cdot f(q_0) \end{array} \right. .$$

Structure Preserving Algorithms V

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd

Sympl... Symplecti... Symplectic what? -Structure Preserving Algorithms

What really happens...

$$H(q,p) = \frac{p^2}{2} + k \frac{q^2}{2}$$

Example: Symplectic Euler-Cromer for the Harmonic Oscillator

$$p_{n+1} = p_n - h \cdot k \cdot q_n$$

$$q_{n+1} = q_n + h \cdot p_{n+1}$$

Howto? Splitting Methods II

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations II

A few odd

Sympl... Symplectic. Symplectic what? -Structure Preserving

What really happens...

$$\varphi_t^{[1]} \ : \left\{ \begin{array}{l} q_1 = q_0 + t \cdot v_0 \\ v_1 = v_0 \end{array} \right. \qquad \varphi_t^{[2]} \ : \left\{ \begin{array}{l} q_1 = q_0 \\ v_1 = v_0 + t \cdot f(q_0) \end{array} \right. .$$

What really happens... I

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations II

A few odd ideas...

Sympl... Symplectic. Symplectic what? -Structure Preserving

What really happens...

Hamilton's equations can be rewritten using Poisson's differential operator D_H .

$$\dot{\vec{z}} = \{\vec{z}, H(\vec{z})\}$$
$$\dot{\vec{z}} = D_H \vec{z}$$

with

$$\vec{z} = \begin{pmatrix} \vec{q} \\ \vec{p} \end{pmatrix}$$

$$D_H = \{ -, H \}$$

What really happens... II

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Sympl... Symplectic Symplectic what? -Structure Preserving

What really happens...

Poisson brackets

$$\{F,G\} = \sum_{i=1}^{n} \left(\frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i} \right)$$

The formal solution

$$\vec{z}(h) = e^{hD_H} \vec{z}(0)$$
$$\vec{z}(h) = e^{h(D_T + D_U)} \vec{z}(0)$$

What really happens... III

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Sympl... Symplecti.. Symplectic what? -Structure Preserving

What really happens...

$$e^{hD_T}e^{hD_U} = e^{(h(D_T + D_U) + \frac{h^2}{2}[D_T, D_U] + \frac{h^3}{12}([D_T, [D_T, D_U]] - \dots)}$$

with

$$[D_T, D_U] = D_T D_U - D_U D_T$$

expansion with coefficients a^i and b^i to cancel out unwanted terms containing commutators up to $O(h^{k+1})$.

$$e^{h(D_T + D_U)} \stackrel{O(h^{k+1})}{=} \prod_{i=1}^k e^{a^i h D_T} e^{b^i h D_U}$$

What really happens... IV

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Sympl... Symplectic. Symplectic what? -Structure Preserving

What really happens...

000PS....

$$e^{hD_H} = e^{h(D_T + D_U)}$$

$$H = T + U$$

$$e^{hD_T}e^{hD_U} = e^{hD_{\tilde{H}}}$$

solving not my origninal but a close by Hamiltonian...

$$\tilde{H} = T + U + \frac{h}{2}[T, U] + \frac{h^2}{12}([T, [T, U]] - [U, [T, U]]) + \dots$$

Numerical Integration ODEs II

S. Eggl

Ordinary Differential Equations I

A few odd ideas...

Sympl... Symplectic Symplectic what? -Structure Preserving Algorithms

What really happens...

Thank you for your attention

References:

Eggl,S., Dvorak,R. An Introduction to Common Numerical Integration Codes Used in Dynamical Astronomy , Lecture Notes in Physics Vol 790, Springer, p.~431-477~(2010)

Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, 2nd edition (2006)

Mathews, J.H., Fink, K.D.: Numerical Methods using Matlab, Prentice-Hall Inc., 4th edition (2004)