
Excercise to numerical Integration and ODEs I

Practical in Numerical Astronomy SS 2010

Siegfried Eggl

1 Excercises in short

• Define the quality of the approximation f(t) achieved by explicit Euler’s
numerical integration of the function

ḟ(t) = df(t)
dt

= Sin(t) depending on the stepzie h and the type of variables
being used (single-, double precision) and compare your results to the ones
gained from numerical differentiation!

• Solve the ordinary differential equation of the dampened Harmonic Oscil-
lator analytically and numerically. Use Euler’s explicit method, Runge-
Kutta’s method, as well as the Simpson’s-Rule and evaluate their perfor-
mances in terms of conservation of total energy and phase-space properties
by comparing them to the analytical solution.

2 Numerical Integration

Once again, let f : R → R, where we denote h = t − t0 as being the so-called
’stepsize’, {t, t0, h} ∈ R. As we have seen lately, using truncated Taylor Series
will result in viable approximations of function values at small displacements
from the origin of developement, given the function’s value as well as the func-
tion’s derivatives at the origin.

f(t0 + h) ≈ f(t0) + ḟ(t0)h +
f̈(t0)

2!
h2 + · · · +

f (n)(t0)

n!
hn + O(hn+1)

Think of the function f(t) now as being the integral of ḟ(t). Truncating the
Taylor Series after the first two terms will give:

f(t0 + h) = f(t0) + ḟ(t0) · h + O(h2)

Using this linear approximation we are able to calculate up to terms of O(h2):

∫ t0+h

t0

ḟ(t)dt = f(t0 + h) − f(t0) ≃ ḟ(t0) · h

Geometrically speaking, we try to model the real value of the integral in terms
of the area of a triangle, spanned by the tangent ḟ and the stepsize h. This
works perfectly if we want to mimic linear functions, but the approximation will
become worse and worse the more f deviates from the linear form. There are
at least two ways to escape this dilemma:

1

Figure 1: Triangle approximation (h · ḟ) to the function f(t) representing the

value of the integral
∫ t0+h

t0
ḟ(t)dt.

1. use polynomials of higher order as approximands

2. make the stepsize h smaller, and consequently do more steps to cover the
same integration range

Though, both of these points have their disadvanteges. Higher order polyno-
mials require the knowlege (or creation) of more integral-function-values, e.g.
f(t0 − h), f(t0 − 2h), f(t0 − h/2), whereas smaller stepsizes h require more cal-
culation steps in order to arrive at f(t0 +h), thereby accumulating unavoidable
roundoff errors. The ”art of numerics” partly consists of finding/guessing the
optimal ansatz for a given problem...

3 Higher Order Algorithms? Easier said than
done...

Just take more terms of the corresponding Taylor Series and... wait a minute.
By now you (should) have found out, that numerical generation of derivatives
is not that good an idea. Yet, for propagating the Taylor Series we need to have
higher functional derivatives?! Not necessarily! Applying clever combinations
of Taylor Series in different directions (e.g. f(t0 + h) ≃ f(t0) + hḟ(t0) and
f(t0 − h) ≃ f(t0) − hḟ(t0)) one can eliminate terms of certain order (in this
case of O(h2)) from the combined series, and therefore produce an algorithm of
second order (exact up to O(h3)).

German mathematicians C.Runge and M.W.Kutta found their famous inte-
gration scheme by comparing the Taylor expansion up to O(h5) with an ansatz
f(t + h) = f(t) + h(a1k1 + a2k2 + a3k3 + a4k4).

For a given differential equation of the form

f ′ = g(t, f), f(t0) = f0

representing an initial value problem, the RK4 algorithm amounts to

fn+1 = fn + h
(

1
6k1 + 1

3k2 + 1
3k3 + 1

6k4

)

tn+1 = tn + h

2

t3 t4t1 t2
t

Euler (h)

f(t)

f(t)

iEuler (h)

Figure 2: Smaller stepsizes (h) will reduce the truncation error, but increase the
number of required calculations.

with the following coefficients.

k1 = g(tn, fn)

k2 = g(tn + 1
2h, fn + 1

2hk1)

k3 = g(tn + 1
2h, fn + 1

2hk2)

k4 = g(tn + h, fn + hk3)

By (tiresome) expansion of these equations and comparison to the actual Taylor
Series, one can see, that their resulting coefficients made it possible to actually
chop all the first terms in the Taylor Series up to O(h5)!

Another way to achieve higher order integration approximants has been dis-
covered by I. Newton and R. Cotes. Their approach was to fit the function that
is to be integrated g(t) (our former ḟ) with polynomials, and integrate those
interpolating polynomials instead of g(t).

Let L(t) be one of those interpolating polynomials - they can be split into
’Lagrange basis polynomials’ li(t), an analogon to unit vectors in algebra, that
may be multiplied with the function values at given points g(ti) = g(t0+i·h), i ∈
N in order to fit them to our desired function g(t).

∫ t0+h

t0

g(t) dt ≈

∫ t0+h

t0

L(t) dt =

∫ t0+h

t0

(
n∑

i=0

g(ti) li(t)
)
dt =

n∑

i=0

g(ti)

∫ t0+h

t0

li(t) dt

︸ ︷︷ ︸

wi

The benefit of this is, that the integrals over these basis functions li(t) are known

3

in advance! So they may be rewritten in terms of ’weighting coefficiens’ wi that
do no longer depend on t. Therefore the integral becomes:

∫ t0+h

t0

g(t) dt ≈

n∑

i=0

wi g(ti)

A whole set of numerical integration algorithms of different orders can thus be
derived.

degree n name weights wi error

0 Rectangle Rule 0 1 h
2

2 f ′(ξ)

1 Trapezoidal Rule 1
2

1
2

h
3

12 f ′′(ξ)

2 Simpson’s Rule 1
6

4
6

1
6

(1
2

h)5

90 f(4)(ξ)

3 3/8-Rule 1
8

3
8

3
8

1
8

3(1
3

h)5

80 f(4)(ξ)

4 Milne-Rule 7
90

32
90

12
90

32
90

7
90

8(1
4

h)7

945 f(6)(ξ)

5 6-Point-Rule 19
288

75
288

50
288

50
288

75
288

19
288

275(1
5

h)7

12096 f(6)(ξ)
where t0 ≤ ξ ≤ t0 + h

Simpson’s Rule will be for example:

∫ t0+h

t0

g(t) dt ≈
h

6
(g(t0) + 4g(t1) + g(t2))

where ti = t0 + h/n · i.

4 Exercises in detail

4.1 Quality control

Show the dependency of the numerical approximations to an analytical integral
on the stepsize h using the function ḟ(t) = Sin(t) and explicit Euler’s method.
In order to achieve that, compare f(t0)analytical to f(t0)numerical and calculate
the relative deviation R(h):

R(h) = log10
f(t0)analytical − f(t0)numerical

f(t0)analytical

(1)

at t0 = 5 for at least 100 different stepsizes h between 1 and 10−6 for single
precision (using Fortran90: real variables) and h between 1 and 10−15 for double
precision (using Fortran90: real*8 variables). Plot the results and compare them
to those of your numerical differentiation!

4.2 The (dampened) Harmonic Oscillator

Being the most basic example for an equation of motion, the Harmonic Oscillator
provides a nice playground in order to get acquainted with numerical integration.
Its mathematical description can be stated in an ordinary differential equation
of second order

d2x

dt2
+ r

dx

dt
+ kx = 0

with x = x(t), r being a friction coefficient and k the spring constant. Solve
this equation analytically, and find its aperiodic limit (transition point between

4

oscillations and exponential decay) for k = 1! In order to treat this equation nu-
merically, it is convenient to split it into two ODE’s of first order by introducing
the velocity v as a new variable.

ẋ(t) = v(t)

v̇(t) = −kx(t) − rv(t)

These equations can be simultaneously propagated.
Now use Euler’s method, Runge-Kutta’s method of 4th order, and Simpson’s-

Rule to find the same limit. You will have to experiment with different param-
eter sets (k, r). A total integration time of 100 timeunits should do. Plot your
results (I suggest you use a logarithmic scale in order to be able to find the limit
case)!

Generate a phase-space diagram (x vs ẋ) of the frictionless Harmonic Os-
zillator (r = 0) and compare the three methods for different stepsizes (h =
0.001, 0.1, 0.5, 1, 10) with the analytic solution!

Also compute and plot the total energy E = T + U of the system against
integration time t! T denotes the kinetic and U the potential energy at every
moment t. What happens to E when you apply different stepsizes and different
methods?

5 Requirements

One protokoll containing

• an introduction to the problems posed.

• answers to each and every question.

• no source code! Latter shall be sent to siegfried.eggl@univie.ac.at in form
of a compilable textfile.

Please send the protocol as a PDF file to siegfried.eggl@univie.ac.at

References

Cash, J. R., Karp, A. H.: A Variable Order Runge-Kutta Method for Initial

Value Problems with Rapidly Varying Right-Hand Sides ACM Transactions
on Mathematical Software, Vol. 16, No. 3, p. 201-222 (1990)

Vesely, F.: Computational Physics - An Introduction Springer US, p.105 et sqq.

(2001)

Eggl,S., Dvorak,R. An Introduction to Common Numerical Integration Codes

Used in Dynamical Astronomy , Lecture Notes in Physics Vol 790, Springer,
p. 431-477 (2010)

5

