Excercise to Discretization I Practical in Numerical Astronomy SS 2010

Siegfried Eggl

1 Excercises in short

- Define the quality of the numerical differentials of the function f(t) = Sin(t) using forward and centered differencing depending on the stepzie h and the type of variables being used (single precision, double precision)
- Prove that

$$f_{xy}(x,y) \approx \frac{f(x+h,y+h) - f(x+h,y-h) - f(x-h,y+h) + f(x-h,y-h)}{4h^2}$$

by using the right combinations of Taylor Series developments of f(x, y) at $f(x + h, y + h), f(x + h, y), f(x - h, y - h), \ldots$

• Generate an Euler's integration scheme for the simple harmonic oscillator.

1.1 Numerical differentiation

Let $f : \mathbb{R} \to \mathbb{R}$, where we denote $h = t - t_0$ as being the so-called 'stepsize', $\{t, t_0, h\} \in \mathbb{R}$. Combining the fundamental theorem of calculus and the mean value theorem as well as forming the limit $h \to 0$ one arrives at the equation for the differential-quotient (Wikipedia Proof 1, 2009):

$$\lim_{h \to 0} \frac{f(t_0 + h) - f(t_0)}{h} = \dot{f}(t_0)$$

Since we are dealing with finite precision numbers, we have to neglect the limit $h \to 0$ and accept that, from this point onward, we are dealing with approximations. of $\dot{f}(t)$, the so-called 'difference-quotients'.

$$\frac{f(t_0 + h) - f(t_0)}{h} \simeq \dot{f}(t_0)$$
(1)

The functions' values $f(t_0 + h)$, $f(t_0)$ as well as the stepsize h are now being representable by discrete numbers. Furthermore, equation 1 can be reformulated to resemble a Taylor-series approximation of $f(t_0 + h)$ up to the first order in h

$$f(t_0 + h) = f(t_0) + f(t_0) \cdot h + O(h^2)$$

Adding similar Taylor-expansions of $f(t_0 + h)$ and $f(t_0 - h)$ will allow us to gain a better approximation of the first derivative:

$$\frac{f(t_0+h) - f(t_0-h)}{2h} \simeq \dot{f}(t_0)$$
(2)

Latter method is called 'centered-difference' for it produces the estimated derivative of f, $\frac{df(t)}{dt}$, at position t_0 , yet it uses the function's values at $t_0 + h$ and $t_0 - h$.

1.2 Numerical integration

Having a proper look at equation (1) one could also discover a way to integrate ordinary differential equations of fist order. Integration in this sense can be set equal to propagation along a parameter (e.g. time t). Rearranging equation (1) produces once again Taylor's approximation:

$$f(t_0 + h) \simeq f(t_0) + h \cdot \dot{f}(t_0) \tag{3}$$

and that's it! Given the initial conditions $f(t_0)$ and a way to evaluate the first derivative $\dot{f}(t_0)$ at that t_0 one can calculate the value of $f(t_0 + h)$ at $t_0 + h$. Truncating Taylor's series after the first derivative and using it like that is called Euler's integration scheme, since it is said to have been introduced by Leonhard Euler (1707-1783).

2 Exercises in detail

2.1 Quality control

Of which order O(h), $O(h^2)$, $O(h^3)$... in stepsize h is the approximation to $\frac{df(t)}{dt}$ in equation (1)? Try to find the Taylor-expansions that will result in equation (2) for yourself. Of which order O(h), $O(h^2)$, $O(h^3)$... is the approximation to $\frac{df(t)}{dt}$ in equation (2)? Is it actually better? Reason your answer! Show the dependency of the numerical approximations to an analytical derivative (equations (1) and (2)) on the stepsize h using the function f(t) = Sin(t).

In order to achieve that, compare $f(t_0)_{analytical}$ to $f(t_0)_{numerical}$ and calculate the relative deviation r(h):

$$r(h) = \log_{10}\left|\frac{\dot{f}(t_0)_{analytical} - \dot{f}(t_0)_{numerical}}{\dot{f}(t_0)_{analytical}}\right| \tag{4}$$

at $t_0 = 5$ for at least 100 different stepsizes h between 1 and 10^{-6} for single precision (using Fortran90: *real* variables) and h between 1 and 10^{-15} for double precision (using Fortran90: *real*8* variables). Plot the results! How does the stepsize h influence the results? What happens when h becomes very small?

2.2 Mixed second derivatives

Use combinations of multidimensional Taylor series expansions around the point f(x, y) for f(x + h, y + h), f(x + h, y), f(x - h, y - h),... and so on (no terms +2h should be required) in order to prove the approximative relation:

$$f_{xy}(x,y) \approx \frac{f(x+h,y+h) - f(x+h,y-h) - f(x-h,y+h) + f(x-h,y-h)}{4h^2}$$

2.3 Euler's Method

Try to find a way to formulate the second order differential equation of the simple harmonic oszillator in terms of Euler's method.

$$x'' = -kx$$

Just write it down please!

3 Requirements

One protokoll containing

- an introduction to the problems posed.
- answers to each and every question.
- no source code! Latter shall be sent to siegfried.eggl@univie.ac.at in form of a compilable textfile.

Please send the protocol as a PDF file to siegfried.eggl@univie.ac.at

References

Wikipedia, Fundamental theorem of calculus, http://en.wikipedia.org/ wiki/Fundamental_theorem_of_calculus (2009)