CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

CUDA

G. Lochmann

Institute of Astronomy, University of Vienna, Vienna, Austria.

Practical in numerical astronomy Vienna

April 2010

Why do we want to use the graphic chip? I

CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

- Optimized for floating point operations per second (FLOPS) for the video game industry
- Computation in parallel, called single instruction multiple data architecture
- Comparison graphic chips and motherboard (single data single instruction)

	Floating point operations per second
NVIDIA Geforce 8800M GTX	360 GFlops
NVIDIA Geforce 8600M GT	43,2 GFlops
Pentium 4,3 GHz	6 GFlops

Why do we want to use the graphic chip? II

CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication • Higher memory bandwidth

• Comparison graphic chips and motherboard

	Memory bandwidth
NVIDIA Geforce 8800M GTX	51,2 GB/s
NVIDIA Geforce 8600M GT	19,2 GB/s
Pentium 4,3 GHz	5,9 GB/s

Why do we want to use the graphic chip? III

CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication • Distribute the working flow to both the motherboard and the graphic chip

• Restricted for complicated evaluations over a small set of initial conditions

• Basic methods derived from the methematic: A problem is parallelizable if it can be described as matrix multiplication

Architecture of the GPU I

CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

• Basically the GPU consists of:

Multiprocessor 2 Multiprocessor 1 Shared Memory Registers Registers Registers Instruction Processor 1 Processor 2 ··· Processor M Instruction Unit Constant Cache Texture Cache	Multiproce	ssor N		
Multiprocessor 1 Shared Memory Registers Register Register Register Register Register Register Register Register Register Register Register Register Register Register Register Register Register R	Multiprocess	or 2		
Shared Memory Registers Registers Processor 1 Processor 2 Processor M Instruction Unit Processor T Processor 2 Processor M Texture Constant Cache Texture	Multiprocesso	·1		
Registers Registers Registers Registers Processor 1 Processor 2 · · · Processor M Instruction Unit Constant Cache		Shared Memory		
Processor 1 Processor 2 ••• Processor 1 Processor 2 Processor 4 Processor 4 Processor 7 Processor	Paristan 1	-	Presidence 1	
Processor 1 Processor 2 • • • Processor M Constant Constant Cache	kegisters 🗸	kegisters ▼	Registers	Instruction Unit
Constant Cache	Processor 1	Processor 2	Processor M	
Constant Cache Texture Cache	<u> </u>	<u>+</u> ++	<u> </u>	
Texture Cache				Constant Cache
Cache				Texture
				Cache
	+	•	*	

• The processor

• DRAM memory, called global or device memory

Linkage to the motherboard through a PCI express BUS

Architecture of the GPU II – The processor I

CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

- The processor contains up to 16 streaming multiprocessors
- Every streaming multiprocessor contains 8 streaming processors
- Each streaming processor evaluates 4 executions pro step
- Computes up to 512 values in the same time

Architecture of the GPU II – The processor II

CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

• On-chip memory consists of:

 Register space: Up to 5000 float-values

• Shared memory: Up to 4000 float-values

CUDA

Architecture of the GPU III – The memory I

CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

- DRAM off-chip memory, called global or device memory
- Used by:
 - Every streaming multiprocessor
 - The CPU to copy forth and back
- 1.5 GByte, circa 0.4 Mrd. float-values
- Needs much more cycles to read or write in contrast to the on-chip memory

Architecture of the GPU IV – The link I

CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

• PCI express BUS with a memory bandwidth of 4 GB per second

• Bottleneck of the computation

Recapitulate

CUDA

- G.Lochmann
- Why use the GPU?
- Architecture of the GPU
- Recap
- Structure seen through CUDA
- Fluxdiagram
- Sample program: matrix multiplication

• Two devices, the motherboard and the graphic chip, that communicate through a "small BUS"

- Two different processors:
 - The CPU working sequentially
 - The GPU working parallel

• Two distinguished memories on which the processors work

Structure seen through CUDA I

CUDA

- G.Lochmann
- Why use the GPU?
- Architecture of the GPU
- Recap
- Structure seen through CUDA
- Fluxdiagram
- Sample program: matrix multiplication

- General:
 - The motherboard is called host
 - The graphic chip is called device
 - A whole computation is called kernel

• With the kernel call the architecture of the computation has to be set through the parameters grid and block

Structure seen through CUDA II

CUDA

- G.Lochmann
- Why use the GPU?
- Architecture of the GPU
- Recap
- Structure seen through CUDA
- Fluxdiagram
- Sample program: matrix multiplication

• The two parameters:

- Grid:
 - Whole executions over all streaming multiprocessors
 - Related to the whole set of initial conditions
- Block:
 - Executions of one streaming multiprocessor
 - Related to the shared memory
- The grid size tells the GPU how many blocks it has to distribute over the streaming multiprocessors
- The block size tells the GPU how many computations it has to perform on one streaming multiprocessor

Structure seen through CUDA III

CUDA

- G.Lochmann
- Why use the GPU?
- Architecture of the GPU

Recap

- Structure seen through CUDA
- Fluxdiagram
- Sample program: matrix multiplication

• The Thread:

Block of initial conditions

- The Warp:
 - Stands for all threads that get executed simultaneously on one streaming multiprocessor
 - Warp size is an important value for time issues

- Corresponds to one execution
- Closest relation to the data, can symbolize one value
- Related to the registers too

Fluxdiagram I

CUDA

G.Lochmann

Why	use	the
GPU	?	

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

• General fluxdiagram:

Fluxdiagram II

Fluxdiagram III

Sample program: matrix multiplication I

CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

• Begin of the sample CUDA-program

Sample program: matrix multiplication II

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

// Copy the given matrices to the reserved space on // the global memory. Using the function cudaMemcpy with // the option cudaMemcpyHostToDevice

cudaMemcpy(d_A, A, mem_size, cudaMemcpyHostToDevice); cudaMemcpy(d_B, B, mem_size, cudaMemcpyHostToDevice);

CUDA

Sample program: matrix multiplication III

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

cudaThreadSynchronize();

Sample program: matrix multiplication III

Sample program: matrix multiplication IV

CUDA

```
G.Lochmann
```

```
Why use the GPU?
```

```
Architecture of the GPU
```

Recap

```
Structure
seen through
CUDA
```

Fluxdiagram

```
Sample
program:
matrix
multiplication
```

• Matrix multiplication in C:

```
// Standard matrixmultiplication on a cpu
void matrixmul_c( float *A, float *B, float *C,
int width, int height )
{
```

```
int i, j, k;
float sum;
```

```
for( i = 0 ; i < height ; i++ )
{</pre>
```

```
for( j = 0 ; j < width ; j++ )
{</pre>
```

```
sum= 0.0;
```

```
for( k = 0 ; k < width ; k++ )
{
    sum= sum+A[k+i*width]*B[k*width+j];
}</pre>
```

```
C[i*width+j]= sum;
```

• Needs 3 loops:

- i-loop for the rows
- j-loop for the columns
- k-loop for every value in the corresponding rows and columns

}

}

Sample program: matrix multiplication V

CUDA

G.Lochmann

```
Why use the GPU?
```

- Architecture of the GPU
- Recap
- Structure seen through CUDA
- Fluxdiagram
- Sample program: matrix multiplication

• Matrix multiplication in CUDA:

// Matrixmultiplication on the gpu
__global__ void matrixmul_kernel(float *d_A, float *d_B,
float *d_C, int width)
{

int i;
float sum;

int col= threadIdx.x+blockIdx.x*blockDim.x;

int row= threadIdx.y+blockIdx.y*blockDim.y;

sum= <mark>0.0</mark>;

```
// Each execution takes one row and one column and multiplies
// the corresponding values, walked through with this loop
for( i = 0 ; i < width ; i++ )
{
    sum= sum+d_A[i+row*width]*d_B[i*width+col];
}</pre>
```

```
d_C[row*width+col]= sum;
```

- Needs 1 loops for the multiplications in the corresponding rows and columns
- Each thread gets this instruction and the parameters:
 - ThreadIdx
 - BlockIdx
 - BlockDim

Sample program: matrix multiplication VI

CUDA

- G.Lochmann
- Why use the GPU?
- Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication

WRONG

Block (0, 0) : Thread (0, 0) => row = 0 ; col = $0 => 1^{4}$ row * 1^{4} column Block (1, 0) : Thread (0, 0) => row = 0 ; col = $0 => 1^{4}$ row * 1^{4} column

RIGHT

Block (0, 0): Thread $(0, 0) \Rightarrow$ row = 0; col = $0 \Rightarrow 1^{\$}$ row * $1^{\$}$ column Block (1, 0): Thread $(0, 0) \Rightarrow$ row = 20; col = $0 \Rightarrow 21^{\$}$ row * $1^{\$}$ column

Sample program: matrix multiplication VII

CUDA

G.Lochmann

Why use the GPU?

Architecture of the GPU

Recap

Structure seen through CUDA

Fluxdiagram

Sample program: matrix multiplication • Execution for the thread (10, 1) within the block (0, 1)

<pre>int i; float cum;</pre>		
rtoat sun;		
int col= 10+0*20 /	<pre>//threadIdx.x+blockIdx.x*blockDim.x;</pre>	
int row= 1+1*20 /	<pre>//threadIdx.y+blockIdx.y*blockDim.y;</pre>	
sum= 0.0;		
<pre>for(i = 0 ; i < width ; i++) {</pre>		
<pre>sum= sum+d_A[i+21*width]*d_B[i*width+10];</pre>		
}		
<pre>d_C[21*width+10]= sum</pre>	1;	

CUDA