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Introduction 

� Major question in celestial mechanics:                                                                                       

-> Stability of (multi) planetary systems 

– Stability issues analysed by 

– Laplace, Lagrange, 

– Gauss, Poincaré, 

– Kolmogorov, Arnold, Moser, …

� Multi-planetary systems:

– generally N-body problems 

� N-Body problem:

– No general, analytical solution -> approximations -> perturbation theory

Credit: http://www.cosmos.esa.int/web/plato
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Introduction 

� 2-Body problem:

– exactly solvable 

– Kepler’s laws, Kepler equation, Kepler orbits 

– completely solved by Johann Bernoulli (1734) 

– elliptic, parabolic, hyperbolic solutions (conic sections)

– Jacobi coordinates

– Integrals of motion:   Energy:                                                ,  Angular momentum: 

Credit:https://en.wikipedia.org/wiki/Two-body_problem
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Introduction 

� 3-Body problem:

– No general, analytic solution 

– However, special solutions do exist:

– Euler solution (1767):        collinear aligned masses          (3 solution families)

– Lagrange solution (1772):  masses form equilateral angle (2 solution families)

– => these solutions become Lagrange points in the Restricted 3-Body problem

– Sundman solution (Karl Frithiof Sundman, 1909): (extremely slowly) convergent 
infinite power series, practically one needs 108 000 000 (!!) terms (Beloriszky, 1930)

– Restricted 3-Body problem (mP ~ 0):

– MacMillan / Sitnikov problem

� N-Body problem:

– No general, analytical solution

– Q. Wang (1991): Generalization of Sundman solution 
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Introduction – Chaos Theory 

� Chaos theory

– Studies behavior of dynamical systems

– Small differences in initial conditions                                                                                      
-> widely diverging outcomes

– => long term prediction nearly impossible in general

– Systems are deterministic -> ‘Deterministic Chaos’ 

– Future fully determined by initial conditions -> no random elements

– “When the present determines the future, but the approximate present does not 
approximately determine the future” 

– Applications: meteorology, sociology, physics, computer science, engineering, 
economics, biology, ecology, philosophy, …

Credit: https://en.wikipedia.org/wiki/Chaos_theory
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Introduction – Chaos Theory 

� Definition of Chaos:

– Common usage (non-scientific): “chaos” means “a state of disorder”

– definition in Poincaré sense: dynamical behavior is not quasi-periodic

->    does not necessarily mean that system will disintegrate                                                     
during any limited period of time (-> solar system)

– Stability in Poisson sense: stability is related to the preservation of a certain 
neighborhood relative to the initial position of the trajectory

-> in conservative systems, quasi periodic orbits remain always confined                       
within certain limits, in this sense they are stable
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Introduction – Chaos Theory 

� Definition of Chaos:

– no universally accepted mathematical definition of chaos exists

– Mathematical definition by Robert L. Devaney (1989):

– to classify a dynamical system, i.e. map f: X → X, as chaotic,                                           
it must fulfil these properties:

1. f must be sensitive to initial conditions

2. f must have topological mixing

3. the set of periodic orbits of  f is dense in X
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Introduction – Chaos Theory 

� Definition of Chaos:

– no universally accepted mathematical definition of chaos exists

– Mathematical definition by Robert L. Devaney (1989):

– to classify a dynamical system, i.e. map f: X → X, as chaotic,                                           
it must fulfil these properties:

1. f must be sensitive to initial conditions

2. f must have topological mixing

3. the set of periodic orbits of  f is dense in X

Six iterations of map xk+1 = 4xk (1- xk)
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Chaos Theory - Systems

� Logistic Map

– Fix point (order k):

– Map becomes chaotic for 

r >= r∞ = 3.5699…  
Credit: https://en.wikipedia.org/wiki/Logistic_map r∞ = 3.5699…
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Chaos Theory - Systems

� Standard Map

– Surface of Section

Credit: https://en.wikipedia.org/wiki/Standard_map

Phase Space (θ, I) for K = 0.6 Phase Space (θ, I) for K = 0.971635

Chaos sets in at K ~ 0.9716535…

(Golden KAM-Torus)
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Chaos Theory – Lyapunov Exponent

� Lyapunov Characteristic Exponent (LCE)

– is a quantity of a dynamical system                                                                                          
that characterizes the rate of separation                                                                                    
of infinitesimally close trajectories

– Two trajectories in phase space with                                                                                         
initial separation        diverge at a rate given by

where λ is the Lyapunov exponent

– generally, rate of separation is different for different orientations of initial separation vector 

– there is a spectrum of Lyapunov exponents λ1, λ2, …, λN , equal in number to dim of phase 
space -> largest λk … Maximal Lyapunov exponent (MLE)

– Positive MLE is an indication that the system is chaotic

Credit: http://www.slideshare.net/dvidby0/
lyapunov-exponent-of-time-series-data
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Chaos Theory – Lyapunov Exponent

� Maximal Lyapunov Exponent

Credit: http://www.slideshare.net/dvidby0/
lyapunov-exponent-of-time-series-data
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Chaos Theory – Lyapunov Exponent

� Lyapunov Exponent for Logistic Map

– is

Credit: http://math.arizona.edu/~ura-reports/001/huang.pojen/2000_Report.html
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Stability of Planet orbit

� Stability of planetary orbits in binary systems (Z. E. Musielak, et al., 2005)

Credit: http://www.aanda.org/articles/aa/full/2005/16/aa0238-04/aa0238-04.right.html
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Stability of Planet orbit

� Evolution of semimajor axes of HD 82943c (S. Ferraz-Mello, 2004)
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Stability of Solar system

� History   (http://www.scholarpedia.org/article/Stability_of_the_solar_system )

– Hipparchus, Ptolemy: epicycles

– Copernicus, Kepler (laws: 1609-1618)

– Newton’s gravitation law 1687

– Laplace-Lagrange

– Correctly formulated equations of motion

-> Perturbation theory

– Hamilton, Jacobi, Poincaré: 1892-1899 not possible to integrate equations of motion of 
3-body problem

– Kolmogorov, Arnold, Moser (KAM theorem), 1950-60: if masses, eccentricities, 
inclinations of planets are small enough -> many initial conditions lead to quasiperiodic 
trajectories, actual masses of planets are much too large to apply directly to solar 
system (Michel Hénon computed that masses needs to be smaller than 10-320 ) 
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Stability of Solar system

� Chaos in the Solar system:

– Integration over 200 Mio years (Laskar, 1989) showed that solar system is in principle 
chaotic, with Lyapunov time of about 50 Mio years

– Marginal stability:

– Solar system is full

– Resonances important (MMR, Secular)

– 3-5 billion years to allow collision

– Solar system is in principal unstable

– But catastrophe time-scale is 5 billion year



November 17th 2016     Seite 18Chaos Indicators

Chaos Indicators - Overview 

� Chaos Indicators are techniques to detect chaos (not to proof chaos)

� Indicators versus Order Parameter (e.g. magnetization M in ferromagnetism)

� “Slow” techniques:

– Poincaré Surfaces of Section

– Poincaré, Birkhoff, Hénon & Heiles

– 2 degrees of freedom

– costly numerical integrations

– in some cases it is impossible to obtain a transverse section for the whole flow

– Maximum Lyapunov Exponent (MLE)

– long time integration  
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Chaos Indicators – Fast Techniques 

� FLI: “Fast Lyapunov Indicator”  (C. Froeschlé, 1984; C. Froeschlé, E. Lega, R. Gonczi, M, Guzzo, 1997-2015)

� OFLI / OFLI2: “Orthogonal Fast Lyapunov Indicator” (M. Fouchard, C. Froeschlé, E.Lega, 2002; R. Barrio, 

P.M. Cincotta)

� MEGNO: “Mean Exponential Growth of Nearby Orbits”  (P.M. Cincotta, C. Simó, 2000; C.M. Giordano,         

N. Maffione)

� SALI / GALI: “Smaller/Generalized Alignment Indices” (C.H. Skokos, 2001; T. Manos)

� RLI: “Relative Lyapunov Indicators” (Z. Sándor, et al. 2004, N. Maffione)
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Fast Lyapunov Indicator (FLI) 

� FLI introduced by C. Froeschlé, et al. (1997)

� Based on Lyapunov Characteristic Exponent (LCE)

– Exponential-like divergence                                                                                                     
of originally nearby trajectories

� Easy (to implement) and sensitive tool                                                                                       
for detection of chaos (“Arnold web”)

Credit: C. Froeschlé, 1984
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Fast Lyapunov Indicator (FLI) 

� Definition of Fast Lyapunov Indicator

– Set of differential equations:

– Equations of motion:

– Evolution of tangent vector v:

=> Fast Lyapunov indicator:

improved version (reduce fluctuations):

Credit: C. Froeschlé, 1984
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Fast Lyapunov Indicator (FLI) 

� Properties of FLI

– Quantity                              tends to the largest Lyapunov exponent                                      
(of spectrum of LCEs) as t goes to infinity

– If differential equations are Hamiltonian and if motion is regular                                              
-> largest Lyapunov exponent is zero, otherwise it is positive.                                               
This property is largely used to discriminate between chaotic and ordered motions

– However, among regular motions the ordinary Lyapunov exponent does not distinguish 
between circulation and libration orbits.

– In contrast, the FLI distinguish between them

– How to choose v(0) for practical implementation? Special choices of v(0) have to be 
avoided

– => compute average (or alternatively the maximum) of the FLIs obtained for an 
orthonormal basis of tangent vectors
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Fast Lyapunov Indicator (FLI) 

� FLI applied on Standard Map 

• 3 orbits

• Libration orbit

• Circulation orbit

• Chaotic orbit

Credit: E. Lega, M. Guzzo, C. Froeschlé, 2015
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Fast Lyapunov Indicator (FLI) 

� FLI applied on Standard Map 

Time evolution of FLI

Credit: E. Lega, M. Guzzo, C. Froeschlé, 2015
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Fast Lyapunov Indicator (FLI) 

� FLI applied on Standard Map 

Credit: E. Lega, M. Guzzo, C. Froeschlé, 2015
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Fast Lyapunov Indicator (FLI) 

� FLI applied on Standard Map 

• FLI for t = 1000

• Grid of 900 x 900 initial conditions

• 2 orthogonal initial vectors

• v(0) = (1,0), w(0) = (0,1) 

• Largest FLI is plotted

Credit: E. Lega, M. Guzzo, C. Froeschlé, 2015
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Fast Lyapunov Indicator (FLI) 

� FLI applied on Standard Map 

• Choice of integration time:

• t = 10     (top left),     t = 100      (top right)

• t = 1000 (bottom left), t = 10 000 (bottom right)

• t = 1000 seems to be appropriate
in that example

Credit: E. Lega, M. Guzzo, C. Froeschlé, 2015
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Fast Lyapunov Indicator (FLI) 

� FLI applied on Standard Map 

Detection of regular/chaotic regions via method
of set propagation -> rather costly

FLI with t = 50 -> very efficient

Credit: E. Lega, M. Guzzo, C. Froeschlé, 2015
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Fast Lyapunov Indicator (FLI) 

� FLI applied to Continuous System:  

Credit: E. Lega, M. Guzzo, C. Froeschlé, 2015
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Orthogonal Fast Lyapunov Indicator 
(OFLI) 

� OFLI introduced by M. Fouchard, C. Froeschlé, E. Lega, 2002

� in case of OFLI one takes component orthogonal to flow

� with OFLI one can distinguish between periodicity among the regular component

� OFLI tends to a constant value for a periodic orbit

� for quasiperiodic and chaotic motion same behavior as FLI
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FLI Example – Hénon -Heiles system

Credit: E. Lega, M. Guzzo, C. Froeschlé, 2015
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MEGNO

� MEGNO (“Mean Exponential Growth of Nearby Orbits”) (P.M. Cincotta, C. Simó, 2000)

– Suitable fast indicator to separate regular from chaotic motion

– Provides relevant information of global dynamics and the fine structure of phase space

– Yields good estimate of the LCN with a comparatively small computational effort

– Provides clear picture of resonance structures, location of stable and unstable periodic 
orbits, as well as measure of rate of divergence of unstable orbits

– Feasible to investigate nature of orbits that have small, positive Lyapunov number

– Converges to null value of LCN faster than classical algorithm to compute the LCN
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MEGNO

� Definition of MEGNO Indicator

– N-dim Hamiltonian                with 

– Equations of motion:  

– : arc of an orbit of the flow over compact energy surface

– Largest Lyapunov Characteristic Number (LCN)
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MEGNO

� Definition of MEGNO Indicator

– tangent vector     satisfies variational equation                                                                   
where    is the Jacobian matrix

– Introduce MEGNO

– , average of 
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MEGNO

� Properties of MEGNO

– for quasi-periodic orbits:

introducing time average

gives
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MEGNO

� Properties of MEGNO

– Asymptotic behavior:

– Irregular, chaotic motion:

– Quasiperiodic motion:

– Stable periodic orbits (resonant elliptic tori):

– Unstable periodic orbits (hyperbolic tori): 
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MEGNO - Example

Credit: N. Maffione, et al., 2011
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SALI / GALI

� Smaller/Generalized Alignment Index (SALI / GALI)

� introduced by H. Skokos (2001)

� Definition SALI

– Orbit in n-dim space with initial condition:

– Deviation vector:

– Evolution in time of two different deviation vectors

– Define SALI as:   
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SALI / GALI

Credit: H. Skokos,  2010
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SALI / GALI

� Properties of SALI

– Behavior for chaotic orbits:

…    two largest LCEs

– SALI → 0 

– Behavior for regular orbits:

– SALI oscillates within the interval (0,2)
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SALI / GALI - Examples

� Chaotic Motion of 3 D Hamiltonian

Credit: H. Skokos,  2010
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SALI / GALI - Examples

� Application to Hénon-Heiles system:

Credit: H. Skokos,  2010
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SALI / GALI – Definition GALI

Credit: H. Skokos,  2010
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SALI / GALI – Definition GALI

� Definition GALI (“Generalized Alignment Index”)

– Orbit in n-dim space with initial condition:

– k deviation vectors 2 ≤ k ≤ 2N

– Define GALI as:

– Wedge product:   
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SALI / GALI

� Properties of GALI

– Behavior for chaotic orbits:

…   k largest LCEs 

– Behavior for regular orbits:
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SALI / GALI - Examples

� Behaviors of GALI for Chaotic Motion of 2 D Hamiltonian (Henon-Heiles system)

Credit: H. Skokos,  2010
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Relative Lyapunov Indicator (RLI) 

� RLI introduced by Z. Sandor, et al., 2004

� Definition of RLI:

– LI difference for “base” orbit and its “shadow”

– define RLI as

� RLI values for chaotic motion are several orders of magnitude higher than for regular motion
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Applications of Fast Chaos Indicators

� Usage of MEGNO <Y> for HD 160692 system:  2:1 mean motion resonance

Bois, E., Kiseleva-Eggleton, L., Rambaux, N.,
Pilat-Lohinger, E., 2003, ApJ 598, 1312
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Applications of Fast Chaos Indicators

� Stability map for Earth-like planet in the aJup, eJup for Sun-Jupiter system

Dvorak, R, et al., Astrobiology, Vol. 10, No 1, 2010
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Summary

� Classical methods to distinguish between regular and chaotic dynamical states like Lyapunov
Characteristic Numbers (LCN), Poincare Surfaces of Section, require costly computations 
over long evolutionary times

� Fast Chaos Indicators (FLI, MEGNO, SALI/GALI, …) represent useful and efficient methods 
to distinguish between regular and chaotic planetary configurations
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