Exocomets

.

B. Loibnegger

03.11.2016, Astrodynamic Seminar

Overview

- Comets in our Solar System
- Exocomets "Short History"
- β Pictoris
- dynamical studies on HD10180

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Artist's conception of β Pictoris Credit: NASA / FUSE / Lynette Cook

Comets in our Solar System I

Comet Ison Credit: Damian Peach, Oct. 11th, 2013

- small (< 20km in diameter)
- ice, dust, frozen water, ammonia, carbon dioxide, carbon monoxide, methane
- source of comets:
 - Kuiper-belt: ring at $\sim 30-50$ AU
 - **Oort cloud**: sphere-like structure (50.000 - 200.000 AU)

うして ふゆう ふほう ふほう うらつ

- Asteroid belt

Comets in our Solar System II

- classification:
- short period comets (p < 200 yrs)
 - p < 20 yrs: Jupiter-family
 - 20
- long period comets (p > 200 yrs)
- main-belt comets
- Sun-grazers

Comet Hyakutake, 1996 Credit:TAMDAS

Exocomets I

- First evidence for exocomets found in β Pictoris (1990, Beust et.al.)
- On short time scales varying absorption lines in spectra of β Pic (Ca II) with infall velocity 0 – 50 kms⁻¹ and terminal velocities sometimes reaching 300 – 400 kms⁻¹

Kiefer et.al., 2014

Exocomets II

Beust et.al., 1990: 2D numerical simulations: absorption of gaseous cloud is computed and a synthetic spectrum is reproduced

- The model assumptions:
 - dust totally evaporated, when close enough to star
 - comets coming from circumstellar disk $\rightarrow\,$ parabolic orbit close to star
 - dust production rate constant and isotropic for nucleus
 - size of dust grains: 1 μ m
- Results:
 - Observations could be reproduced
 - infalling bodies have to come from $\Phi\sim 150^\circ$ (line between axis of orbit and line of sight)
 - No Call absorption component produced closer than $\sim 10-15 R_{\star}$ (radiation pressure)

Dynamical work on β Pictoris:

Beust & Morbidelli, 1996

- propose: mean-motion resonances with a massive planet on moderately eccentric orbit
- 4:1 or 3:1 resonance with planet with $e \ge 0.05$
- Planet β Pic b found in 2008:

Planet	Mass (MJup)	Radius (R _{Jup})	Period (day)	(AU)	e	i (deg)	Ang. dist. (arcsec)	Discovery	Update
beta Pic b	7	1.65	13288	13.18	0.323	89.01	0.440415	2008	2016-02-16
Showing 1 to 1 of 1 entries							First	Previous 1	Next Last

www.exoplanet.eu

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Two families of exocomets in β Pictoris

Kiefer et.al.,2014

Population S:

- broad distribution of radial velocities: $36 \pm 55 kms^{-1}$
- broad distribution in FWHM
- small surface ratio
- orbits close to star: $d \sim 10 \pm 3R_{\star}$
- less active

Population D:

- narrow distribution of radial velocities: $15 \pm 6 kms^{-1}$
- peaked distribution in FWHM
- large surface ratio
- orbits at wider distances: $d \sim 19 \pm 4 R_{\star}$
- active surfaces
- larger periastron distances and narrow range of longitudes indicates they share similar orbit and may result from breakup of bigger body

Exocomets in other star systems: I

Credit: NASA

- varying absorption features with $\pm 100 kms^{-1}$ in HD21620, HD110411, HD42111, HD145964 (all < 5Myrs old) (Welsh & Montgomery, 2013)
- 22 exo-Kuiper-belt candidates found in exo-systems: "Leftover planetesimal belts are common" (Nilsson, 2010)

うして 山口 マルビア エロア ション

• Dust has a limited lifetime \rightarrow asteroidal and/or cometary bodies continuously renew the amount of dust and form dusty debris disks (Welsh & Montgomery, 2013)

Exocomets in other star systems: II

- Stars form in clusters $\rightarrow\,$ Sun captured comets from other stars
 - a substantial fraction of Oort cloud comets (perhaps >90%) are from the protoplanetary disks of other stars (Levison et.al, 2010)

Dynamical Work on HD10180 I

Setup:

- comets distributed on a sphere: $0^{\circ} < i < 180^{\circ}$, $0^{\circ} < \Phi < 360^{\circ}$
- eccentricity:
 0.95 < e < 0.99
- integrations for different initial semi-major axes in the range of 90AU 150AU

▲ 伊 ▶ ▲ 三 ▶ .

Planet	Mass (MJup)	Radius (RJup)	Period (day)	a (AU)	е	i (deg)	Ang. dist. (arcsec)	Discovery	Update
HD 10180 c	0.041217	-	5.75979	0.0641	0.045	-	0.001627	2010	2012-01-31
HD 10180 d	0.03696945	<u>1913</u>	16.3579	0.1286	0.088	1 <u>11</u> 17	0.003264	2010	2012-01-31
HD 10180 e	0.07897304	-	49.745	0.2699	0.026	—	0.00685	2010	2012-01-31
HD 10180 f	0.07519743	-	122.76	0.4929	0.135	(0.01251	2010	2012-01-31
HD 10180 g	0.06733159		601.2	1.422	0.19	_	0.036091	2010	2010-12-07
HD 10180 h	0.202624	1000	2222	3.4	0.08	14-07	0.086294	2010	2010-12-07

Dynamical Work on HD10180 II

Dynamical Work on HD10180 III

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Dynamical Work on HD10180 IV

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dynamical Work on HD10180 V

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Summary and Conclusions

- There exist comets in other planetary systems.
 - Leftovers from planetformation
 - They continuously renew the amount of dust
- There exist families of comets (e.g. β Pictoris)
- Dynamically:
 - From orbits of comets \rightarrow propose planets (mean-motion resonances)

うして ふゆう ふほう ふほう うらつ

- Capture of comets on stable orbits is possible
- We need a massive planet to capture comets

Thanks for your attention!

C/2014 Q1 (Pan-STARRS), Photo by Yuri Beletsky

<ロ> (四) (四) (三) (三) (三) (三)