### Stability of Planetary Systems

### Habitable Zone

#### Zone around a star where liquid water can exist on the surface of a terrestial-like planet

#### This zone depends on:

- the spectraltype, the mass, the age, .... of the star
- the orbit of the planet
- the mass, the composition, the atmosphere, .....of the planet
- the parameters of other planets in this system (mass, orbit, ...)

#### Size of the Habitable Zone (HZ)

based on the definition given by Kasting et al. (1993).





Main Sequence Stars, Icarus, 101, p. 108, 1993

#### exoplanet.eu

### website of Jean Schneider (Paris) Catalog of Extra-Solar Planets

## Information of all discovered planets outside the solar system

#### exoplanet.eu

841 Planets

663 Planetary Systems

**126 Multi-Planet Systems** 

## Semi-major axis – eccentricity diagram of all discovered extra-solar planets



#### High eccentric planetary motion occurs quite often!

# Distribution of the orbital eccentricity



#### ~ 400 planets e < 0.2

Requirements for the Habitable Zone from the dynamical point of view

 Long-term stability of the planetary system

 Appropriate distance of the planet to the host-star

Small eccentricity

#### HZ is a small area !



Kasting et al. (1993).

## Semi-major axis – eccentricity diagram of all discovered extra-solar planets



#### High eccentric planetary motion occurs quite often!

#### **Types of Habitable Zones:**



(1)Hot-Jupiter type
(2) Solar system type
(3)+(4) giant planet type: habitable moon or trojan planet



October 2012: 663 planetary systems 841 planets

#### 126 Multi-planet systems

(http://exoplanet.eu/catalog/)



57 planets
 in binaries
 (Roell et al., 2012, A&A)



Single-Star - Single-Planet

#### **Two Body Problem**

Interaction of two masses moving under the mutual gravitational attraction described by Newton's universal law of gravitation:

 $F = G (m1.m2)/d^2$ 

and Kepler's empirical laws of planetary motion

#### + Orbital elements

The planets move in ellipses with the Sun at one focus (first Kepler's law)



#### Osculating elements: $(a,e,i,\Omega,\omega,\nu)$



### **N-body Systems**

The 3-body problem is the simpliest n-body system

> it has no analytical solution ---18 integrals of motion are needed but only 10 are known the other do not exist (as already shown by Poincare)

## Perturbations in multi-planet systems:

Mean Motion Resonances (MMR): the orbital periods of two celestial bodies have a ratio of small integers → there is a regular, periodic gravitational influence

**Secular Resonance** 

#### **Major catastrophe in less than 100000 years**



(S. Ferraz-Mello, 2004)

Classification of the known multi-planet systems (S.Ferraz-Mello, 2005)

Class Ia -> Planets in mean motion resonance
 Class Ib -> Low-eccentricity near-resonant planet pairs
 Class II -> Non-resonant planets with significant secular dynamics
 Class II -> Hierarchical planet pairs