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Smoothed Particle Hydrodynamics 
(SPH)

● SPH origin: simulating hydrodynamic problems in 
astrophysics
– Extended to elasto-plastic dynamics & self gravity

● Application examples include
– Cosmology

– Star and planet formation

– Interactions of stars, black holes,...

– Accretion discs

– Material science

– …



  

SPH is a mesh-free Lagrangian 
particle method

● Completely different from finite difference and finite 
volume methods → well suited for comparisons

● The simulated system is represented as a set of 
interacting “SPH particles” which
– carry all physical properties of their “fluid part”
– determine the density in their region (= number of SPH particles 

in a specific region)
– move like point masses governed by the Lagrangian form of the 

equations of motion

– are to be interpreted as a numerical
vehicle rater than physical particles

Speith (2012)



  

SPH principle

● System of coupled PDEs → system of ODEs

1.Smooth quantities via kernel convolution

2.Remove spatial derivatives

3.Discretize

NUI Galway (2012)

h... smoothing length, “radius” of kernel, determines spatial resolution



  

Example: equivalent formulations

● Equivalent to

to ensuring that derivatives of constant 
functions vanish:



  

Problem-dependent equation 
formulation

● Example Euler equation

● Equivalent to           and numerically more stable:

● using λ=1 in the identity



  

SPH for impact simulations

Mesh-free Lagrangian method provides natural reference 
frame for treating deformations and fragmentation

Lagrange scheme Euler scheme

Speith (2012)Lagrange scheme: number of “grid points” resolving
the object is not reduced by deformation



  

Special SPH topics

● Tensile instability
– Artificial clumping leading to unphysical results

– Solution: small artificial repulsive stress (Monaghan 2000)

● There are other SPH issues
– XSPH

● Smooth velocities preventing mutual penetration

– Artificial viscosity
● Prevents mutual penetration of particles

– Integrate density rather than using ρ = Σ m W for stable surfaces

– …

Speith (2012)



  

Solid bodies: continuum mechanics

ε

σ

Schäfer (2005)

A) Hooke's law: elasticity, deviatoric stress rate proportional to 
strain rate

B) Yielding relations: plasticity by modifying stresses beyond 
the elastic limit

C) Damage model and brittle failure for tensile stresses beyond 
material strength



  

Material equations



  

Plastic behavior:
von Mises yielding criterion

Limit deviatoric stress tensor by

with

and the material dependent yield stress Y0



  

Equation of state

● Connects the thermodynamic variables ρ, p, 
and u to close the set of equations

● Several analytical and semi-empirical 
approaches exist, e.g.,
– Murnaghan EOS (isothermal only)

– Tillotson (1962) EOS

– ANEOS EOS
● Semi-analytical, not freely available



  

Fracture model

Speith (2012)

● Large enough local strain
causes flaws in the solids to
develop into cracks

● Cracks grow at half the speed
of sound until the local stress
is relieved

● Grady & Kipp (1980) damage
model:

– damage D with 0 ≤ D ≤ 1

– Stress ~ (1 – D)

● Modified stress tensor:



  

Flaw distribution

● The Grady-Kipp damage model assumes a 
probability distribution of flaws

● Weibull (1939) distribution:

n(ε) = k εm

n … number of flaws per unit volume with activation 
thresholds < ε

k, m … material parameters

● Distribution parameters not easily measurable...



  

Numerical tests

Speith (2012)
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First results

● Collisions of brittle bodies (basalt)
● Tillotson EOS, measured Weibull distribution parameters
● Projectile:

– Spherical, e.g. small asteroid, 50cm radius

– No flaws

● Target:
– Spheroidal, e.g., irregular shaped small asteroid

● Semi axes: 5m, 10m

● Impact velocity 1 km/s

a
b

r

Maindl et al. (2013)

file:///home/maindl/impact_v1ksmall.mpeg


  

Challenge: material constants

● Material constants
– Shear modulus μ

–

– bulk modulus K, yield stress Y

– Weibull distribution parameters

– EOS coefficients

Maindl et al. (2013)



  

Outlook

● Measure fragmentation and merging
● Goal: water in early planetary systems

– What influence does water content have?
● Fragmentation
● Merging

– Water in/on protoplanets

– Influence of different water/ice
distributions

– Porous bodies

– Self gravitation?

– Link to n-body

impact parameter

a b

r

impact velocity

α
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