FWF National Research Program (NFN) Pathways to Habitability (PatH)

SPH for simulating impacts and collisions

Thomas I. Maindl University of Vienna

Jan 22, 2013

Christoph Schäfer, Roland Speith (Eberhard Karls University of Tübingen)

Agenda

- SPH quick overview
- Solid body physics overview
- Tests and first results
- Outlook
- References

Smoothed Particle Hydrodynamics (SPH)

- SPH origin: simulating hydrodynamic problems in astrophysics
 - Extended to elasto-plastic dynamics & self gravity
- Application examples include
 - Cosmology
 - Star and planet formation
 - Interactions of stars, black holes,...
 - Accretion discs
 - Material science

- ...

SPH is a mesh-free Lagrangian particle method

- Completely different from finite difference and finite volume methods → well suited for comparisons
- The simulated system is represented as a set of interacting "SPH particles" which
 - carry all physical properties of their "fluid part"
 - determine the density in their region (= number of SPH particles in a specific region)
 - move like point masses governed by the Lagrangian form of the equations of motion
 - are to be interpreted as a numerical vehicle rater than physical particles

Speith (2012)

SPH principle

- System of coupled PDEs \rightarrow system of ODEs
 - 1. Smooth quantities via kernel convolution $f(\mathbf{r}) \longrightarrow \int f(\mathbf{r}') W(|\mathbf{r} - \mathbf{r'}|) \, \mathrm{d}\mathbf{V'} = f(\mathbf{r}) + \mathcal{O}(h^2)$

h... smoothing length, "radius" of kernel, determines spatial resolution

2. Remove spatial derivatives $\nabla f(\boldsymbol{r}) \longrightarrow \int f(\boldsymbol{r}') \nabla W(|\boldsymbol{r} - \boldsymbol{r'}|) \, \mathrm{d} \boldsymbol{V'}$

3. Discretize

$$\nabla f(\mathbf{r}^{i}) \approx \sum_{j} \frac{m^{j}}{\rho^{j}} f(\mathbf{r}^{j}) \nabla W(|\mathbf{r}^{i} - \mathbf{r}^{j}|, h)$$

Example: equivalent formulations

• Equivalent to $\nabla f(\mathbf{r}^i) \approx \sum_j \frac{m^j}{\rho^j} f(\mathbf{r}^j) \nabla W(|\mathbf{r}^i - \mathbf{r}^j|, h)$

to $\mathcal{O}(h^2)$ ensuring that derivatives of constant functions vanish:

$$\begin{split} \nabla f^{i} &= \frac{\rho^{i}}{\rho^{i}} \nabla f^{i} = \frac{1}{\rho^{i}} \left[\nabla(\rho^{i} f^{i}) - f^{i} \nabla \rho^{i} \right] \\ &\approx \frac{1}{\rho^{i}} \sum_{j} \frac{m^{j}}{\rho^{j}} \rho^{j} f^{j} \nabla W(|\boldsymbol{r^{i}} - \boldsymbol{r^{j}}|, h) - \frac{f^{i}}{\rho^{i}} \sum_{j} \frac{m^{j}}{\rho^{j}} \rho^{j} \nabla W(|\boldsymbol{r^{i}} - \boldsymbol{r^{j}}|, h) \\ &= \frac{1}{\rho^{i}} \sum_{j} m^{j} (f^{j} - f^{i}) \nabla W(|\boldsymbol{r^{i}} - \boldsymbol{r^{j}}|, h) \end{split}$$

Problem-dependent equation formulation

• Example Euler equation

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\frac{1}{\rho}\nabla p \qquad \quad \frac{\mathrm{d}\boldsymbol{v}^{i}}{\mathrm{d}t} = -\sum_{j}\frac{m^{j}}{\rho^{j}}\frac{p^{j}}{\rho^{i}}\nabla W(|\boldsymbol{r^{i}}-\boldsymbol{r^{j}}|,h)$$

• Equivalent to $\mathcal{O}(h^2)$ and numerically more stable:

$$\frac{\mathrm{d}\boldsymbol{v}^{i}}{\mathrm{d}t} = -\sum_{j} m^{j} \frac{p^{i} + p^{j}}{\rho^{i} \rho^{j}} \nabla W(|\boldsymbol{r^{i}} - \boldsymbol{r^{j}}|, h)$$

• using $\lambda = 1$ in the identity

$$\frac{1}{\rho^{2-\lambda}}\nabla \frac{p}{\rho^{\lambda-1}} = \frac{1}{\rho}\nabla p - \frac{p}{\rho^{\lambda}}\nabla \rho^{\lambda-1}$$

SPH for impact simulations

Mesh-free Lagrangian method provides natural reference frame for treating deformations and fragmentation

Lagrange scheme: number of "grid points" resolving the object is not reduced by deformation

Speith (2012)

Special SPH topics

- Tensile instability
 - Artificial clumping leading to unphysical results

- Solution: small artificial repulsive stress (Monaghan 2000)
- There are other SPH issues
 - XSPH

. . .

- Smooth velocities preventing mutual penetration
- Artificial viscosity
 - Prevents mutual penetration of particles
- Integrate density rather than using $\rho = \Sigma$ m W for stable surfaces

Solid bodies: continuum mechanics

- A) Hooke's law: elasticity, deviatoric stress rate proportional to strain rate
- B) Yielding relations: plasticity by modifying stresses beyond the elastic limit
- C) Damage model and brittle failure for tensile stresses beyond material strength

Material equations

Continuity equation (mass conservation):

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho \,\frac{\partial v^{\alpha}}{\partial x^{\alpha}}$$

EOM (conservation of momentum):

 $\frac{\mathrm{d}v^{\alpha}}{\mathrm{d}t} = \frac{1}{\rho} \frac{\partial \sigma^{\alpha\beta}}{\partial x^{\beta}} - \frac{\partial \Phi}{\partial x^{\alpha}}, \qquad \text{stress tensor } \sigma^{\alpha\beta} = -p \, \delta^{\alpha\beta} + S^{\alpha\beta}$

Energy conservation:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\frac{p}{\rho} \frac{\partial v^{\alpha}}{\partial x^{\alpha}} + \frac{1}{\rho} S^{\alpha\beta} \dot{\varepsilon}^{\alpha\beta}, \qquad \text{strain rate tensor } \dot{\varepsilon}^{\alpha\beta} = \frac{1}{2} \left(\frac{\partial v^{\alpha}}{\partial x^{\beta}} + \frac{\partial v^{\beta}}{\partial x^{\alpha}} \right)$$

Constitutive equation:

$$\frac{\mathrm{d}S^{\alpha\beta}}{\mathrm{d}t} = 2\mu \left(\dot{\varepsilon}^{\alpha\beta} - \frac{1}{3}\,\delta^{\alpha\beta}\dot{\varepsilon}^{\gamma\gamma}\right) + S^{\alpha\gamma}R^{\gamma\beta} + S^{\beta\gamma}R^{\gamma\alpha}$$

with rotation rate tensor $R^{\alpha\beta} = \frac{1}{2}\left(\frac{\partial v^{\alpha}}{\partial x^{\beta}} - \frac{\partial v^{\beta}}{\partial x^{\alpha}}\right)$

EOS: $p = p(\rho, u)$

Plastic behavior: von Mises yielding criterion

Limit deviatoric stress tensor by

 $S^{\alpha\beta}=f\,S^{\alpha\beta}$

with $f = \min\left[\frac{Y_0^2}{3J_2}, 1\right], \qquad J_2 = \frac{1}{2} S^{\alpha\beta} S^{\alpha\beta}$

and the material dependent yield stress Y_0

Equation of state

- Connects the thermodynamic variables ρ, p, and u to close the set of equations
- Several analytical and semi-empirical approaches exist, e.g.,
 - Murnaghan EOS (isothermal only) $p = \frac{K_0}{n} \left[\left(\frac{\rho}{\rho_0} \right)^n 1 \right]$
 - Tillotson (1962) EOS

$$p = \left(a + \frac{b}{\frac{u}{u_0\eta^2} + 1}\right)\rho u + A\mu + B\mu^2, \ \eta = \frac{\rho}{\rho_0}, \ \mu = \eta - 1 \qquad (u < u_{iv})$$

$$p = a\rho u + \left[\frac{b\rho u}{\frac{u}{u_0\eta^2} + 1} + A\mu e^{-\beta\left(\frac{\rho_0}{\rho} - 1\right)}\right] e^{-\alpha\left(\frac{\rho_0}{\rho} - 1\right)} \qquad (u > u_{cv})$$

- ANEOS EOS
 - Semi-analytical, not freely available

Fracture model

- Large enough local strain causes flaws in the solids to develop into cracks
- Cracks grow at half the speed of sound until the local stress is relieved
- Grady & Kipp (1980) damage model:
 - damage D with $0 \le D \le 1$
 - − Stress ~ (1 − D)
- Modified stress tensor:

$$\sigma^{\rm damaged}_{\alpha\beta} = \begin{cases} -p\delta_{\alpha\beta} + (1-D)S_{\alpha\beta} & , \ p \ge 0 \ \text{(compression)} \\ -(1-D)p\delta_{\alpha\beta} + (1-D)S_{\alpha\beta} & , \ p < 0 \ \text{(tension)} \end{cases}$$

Flaw distribution

- The Grady-Kipp damage model assumes a probability distribution of flaws
- Weibull (1939) distribution:

$$n(\varepsilon) = k \varepsilon^m$$

n ... number of flaws per unit volume with activation thresholds < ε

k, m ... material parameters

• Distribution parameters not easily measurable...

Numerical tests

First results

- Collisions of brittle bodies (basalt)
- Tillotson EOS, measured Weibull distribution parameters
- Projectile:
 - Spherical, e.g. small asteroid, 50cm radius
 - No flaws
- Target:
 - Spheroidal, e.g., irregular shaped small asteroid
 - Semi axes: 5m, 10m
- Impact velocity 1 km/s

Table 2(I) Material constants, cf. Benz & Asphaug(1999), (II) Weibull distribution parameters, cf. Nakamuraet al. (2007) and Lange et al. (1984), respectively

	(I)		(II)		
	μ	Y	m	k	
	(GPa)	(GPa)		(m^{-3})	
Basalt	22.7	3.5	16	10^{61}	
Ice	2.8	1	9.1	10^{46}	

Tillotson EOS parameters and vaporization energy levels adopted from Benz & Asphaug (1999)

	$\frac{ ho_0}{(\mathrm{kg}/\mathrm{m}^3)}$	A (GPa)	B (GPa)	E_0 (MJ/kg)	E_{iv} (MJ/kg)	E_{cv} (MJ/kg)	a	b	α	β
Basalt Ice	2700 917	$26.7 \\ 9.47$	$26.7 \\ 9.47$	487 10	$4.72 \\ 0.773$	18.2 3.04	$0.5 \\ 0.3$	$1.50 \\ 0.1$	$5.0 \\ 10.0$	$5.0 \\ 5.0$

Maindl et al. (2013)

Challenge: material constants

Θ

- Material constants
 - Shear modulus μ
 - bulk modulus K, yield stress Y
 - Weibull distribution parameters
 - EOS coefficients

 Table 2
 (I) Material constants, cf. Benz & Asphaug (1999), (II) Weibull distribution parameters, cf. Nakamura et al. (2007) and Lange et al. (1984), respectively

	(I)		(II)	
	μ	Y	m	k
	(GPa)	(GPa)		(m^{-3})
Basalt	22.7	3.5	16	10^{61}
Ice	2.8	1	9.1	10^{46}

Tillotson EOS parameters ar	d vaporization energy	levels adopted from	Benz & Asphaug (1999)
-----------------------------	-----------------------	---------------------	------------------	-------

	$ ho_0 m (kg/m^3)$	A (GPa)	B (GPa)	E_0 (MJ/kg)	E_{iv} (MJ/kg)	E_{cv} (MJ/kg)	a	b	α	β
Basalt	2700	26.7	26.7	487	4.72	18.2	0.5	1.50	5.0	5.0
Ice	917	9.47	9.47	10	0.773	3.04	0.3	0.1	10.0	5.0

Outlook

- Measure fragmentation and merging
- Goal: water in early planetary systems
 - What influence does water content have?
 - Fragmentation
 - Merging
 - Water in/on protoplanets
 - Influence of different water/ice distributions
 - Porous bodies
 - Self gravitation?
 - Link to n-body

References

Benz, W., Asphaug, E.: 1994, Icar 107, 98.

Benz, W., Asphaug, E.: 1999, Icar 142, 5.

Grady, D. E., Kipp, M. E.: 1980. Continuum modelling of explosive fracture in oil shale. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17, 147.

Lange, M.A., Ahrens, T.J., Boslough, M.B.: 1984, Icar 58, 383.

Maindl, T.I., Schäfer, C., Speith, R., Süli, Á., Forgacs-Dajka, E., Dvorak, R.: 2013, SPH-based simulation of icy asteroid collisions. Astron. Nachrichten, in preparation.

Melosh, H.J.: 1989, Impact Cratering – A Geologic Process, Oxford Univ. Press, New York.

Monaghan, J.J.: 2000, SPH without a tensile instability. Journal of Computational Physics 159, 290.

Nakamura, A.M., Michel, P., Setoh, M.: 2007, JGR 112, E02001, doi:10.1029/2006JE002757.

NUI Galway: 2012, National University of Ireland, Galway, http://www.nuigalway.ie/mechbio/research/meshfree.html, accessed Sep 1, 2012.

Schäfer, C.: 2005, Application of Smooth Particle Hydrodynamics to selected Aspects of Planet Formation, Dissertation, Eberhard-Karls-Universität Tübingen.

Speith, R.: 2012, Smoothed Particle Hydrodynamics, Workshop at University of Vienna, Aug 1-3, 2012, unpublished.

Tillotson, J. H.: 1962. Metallic equations of state for hypervelocity impact. General Atomic Report GA-3216.

Weibull, W. A.: 1939. A statistical theory of the strength of materials [translated]. Ingvetensk. Akad. Handl. 151, 5.

Thank you!