gnuplot

An Interactive Plotting Program

Thomas Williams & Colin Kelley

Version 4.1 organized by: Hans-Bernhard Bröker and others

Major contributors (alphabetic order):

Hans-Bernhard Bröker

John Campbell

Robert Cunningham

David Denholm

Gershon Elber

Roger Fearick

Carsten Grammes

Lucas Hart

Lars Hecking

Thomas Koenig

David Kotz

Ed Kubaitis

Russell Lang

Alexander Lehmann

Alexander Mai

Ethan A Merritt

Petr Mikulík

Carsten Steger

Tom Tkacik

Jos Van der Woude

Alex Woo

James R. Van Zandt

Johannes Zellner

Copyright (C) 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley

Mailing list for comments: gnuplot-info@lists.sourceforge.net Mailing list for bug reports: gnuplot-bugs@lists.sourceforge.net

This manual was prepared by Dick Crawford.

Last edited: 2004/04/13 17:23:36

Contents

1	Gn	nuplot	14
1	Cop	yright	14
2	Intr	oduction	14
3	Seek	king-assistance	15
4	New	v Features	16
	4.1	New plot styles	16
		4.1.1 Histogram	16
		4.1.2 Label plots	16
		4.1.3 Image data mapped onto plot	16
		4.1.4 Filled curves	16
		4.1.5 Vectors	16
	4.2	String and text data read from datafiles	16
	4.3	Auto-layout of multiple plots on a page	16
	4.4	Input from binary data files	16
	4.5	New or revised terminal drivers	16
		4.5.1 Consolidated gif/jpeg/png driver	16
		4.5.2 New Enhanced MetaFile (EMF) driver	16
		4.5.3 Adobe Illustrator (ai) driver deprecated	16
5	Feat	tures introduced in version 4.0	16
	5.1	Mouse and hotkey support in interactive terminals	17
	5.2	New terminals	17
	5.3	New plot style pm3d	17
	5.4	Filled boxes	17
	5.5	New plot option smooth frequency	17
	5.6	Improved text options	17
	5.7	More text encodings	18
	5.8	Arrows	18
	5.9	Data file format	18
	5.10	New commands	18
	5.11	Other changes and additions	18
	5.12	Accompanying documentation	18
6	Bato	ch/Interactive Operation	19
7	Con	nmand-line-editing	19
8	Con	nments	20

9	Coordinates	2 0
10	Datastrings	21
11	Environment	21
12	Expressions	22
	12.1 Functions	22
	12.1.1 Random number generator	24
	12.2 Operators	24
	12.2.1 Unary	24
	12.2.2 Binary	25
	12.2.3 Ternary	25
	12.3 Gnuplot-defined variables	26
	12.4 User-defined variables and functions	26
13	Glossary	27
14	Linetype, colors, and styles	27
	14.1 Colorspec	28
15	Mouse input	28
	15.1 Bind	
	15.2 Mouse variables	
16	Plotting	30
17	Start-up	30
18	String constants and string variables	31
19	Substitution and Command line macros	31
	19.1 Substitution of system commands in backquotes	31
	19.2 Substitution of string variables as macros	32
	19.3 String variables, macros, and command line substitution	32
20	Syntax	33
	20.1 Quote Marks	33
21	Time/Date data	34
II	Commands	34
22	\mathbf{Cd}	35

35

23 Call

24	Clea	r			36
25	Exit				36
26	\mathbf{Fit}				36
	26.1	Adjusta	ble paramet	ters	37
	26.2	Short in	troduction		38
	26.3	Error es	timates		39
		26.3.1	Statistical	overview	39
		26.3.2	Practical g	ruidelines	40
	26.4	Fit cont	rolling		40
		26.4.1	Control var	riables	40
		26.4.2	Environme	ent variables	41
	26.5	Multi-bi	ranch		41
	26.6	Starting	values		42
	26.7	Tips			42
27	Help	1			43
26	Histo	OWY.			43
		Э г у			
29	If				43
30	Load	l			44
31	Paus	se			44
29	Plot				45
34		Data			45 45
	32.1	32.1.1			
		32.1.1	•	neral	
		52.1.2	32.1.2.1	Array	
			32.1.2.2	Record	
			32.1.2.3	Format	
			32.1.2.4	Endian	
			32.1.2.5	Filetype	
			32.1.2.6	Edf	
			32.1.2.7	Keywords	
			32.1.2.8	Scan	
			32.1.2.9	Transpose	
			32.1.2.10	Dx, dy, dz	
			32.1.2.10	Flipx, flipy, flipz	
			32.1.2.11	Origin	
			32.1.2.12	Center	
			32.1.2.13	Rotate	50

			32.1.2.15	Perpendicular	 	 	50
			32.1.2.16	Binary_examples	 	 	50
		32.1.3	•				
		32.1.4	-	atafile			
		32.1.5	Index		 	 	
		32.1.6	Smooth .				
			32.1.6.1	Acsplines	 	 	52
			32.1.6.2	Bezier			
			32.1.6.3	Csplines	 	 	53
			32.1.6.4	Sbezier	 	 	53
			32.1.6.5	Unique			
			32.1.6.6	Frequency			
		32.1.7	Special-file	names	 	 	53
		32.1.8					
		32.1.9	Using				
			32.1.9.1	Using title	 	 	56
			32.1.9.2	Xticlabels	 	 	56
			32.1.9.3	X2ticlabels	 	 	56
			32.1.9.4	Yticlabels	 	 	56
			32.1.9.5	Y2ticlabels	 	 	56
			32.1.9.6	Zticlabels			
	32.2						
	32.3	Errorlin	nes		 	 	57
	32.4						
	32.5	0					
	32.6	Title .			 	 	59
	32.7	With			 	 	59
33	Prin	ıt.					61
34	Pwd						61
35	Quit	;					61
36	Rep	\mathbf{lot}					62
27	Rere	and					62
38	Rese	et					63
39	Save)					63
40	Set-	show					64
	40.1	Angles			 	 	64
	40.2	Arrow			 	 	64

40.3 Autoscale	 66
40.3.1 Parametric mode	 67
40.3.2 Polar mode	
40.4 Bars	
40.5 Bmargin	
40.6 Border	
40.7 Boxwidth	 69
40.8 Clabel	 70
40.9 Clip	 70
40.10 Cntrparam	 70
40.11 Color box	 72
40.12 Contour	 73
40.13 Data style	 73
40.14 Datafile	 73
40.14.1 Set datafile missing	 73
40.14.2 Set datafile separator	
40.14.3 Set datafile commentschars	 75
40.14.4 Set datafile binary	 75
40.15 Decimalsign	
40.16 Dgrid3d	
40.17 Dummy	
40.18 Encoding	
40.19 Fit	
40.20 Fontpath	
40.21 Format	
40.21.1 Gprintf	
40.21.2 Format specifiers	
40.21.3 Time/date specifiers	
40.22 Function style	
40.23 Functions	
40.24 Grid	
40.25 Hidden3d	
40.26 Historysize	
40.27 Isosamples	
40.28 Key	
40.29 Label	
40.30 Lmargin	
40.31 Loadpath	
40.32 Locale	
40.34 Macros	
40.34 Macros	 88
AU . A. PRINTERIO	~~

40.36 Margin	89
40.37 Mouse	89
40.37.1 X11_mouse	91
40.38 Multiplot	91
40.39 Mx2tics	92
40.40 Mxtics	92
40.41 My2tics	93
40.42 Mytics	93
40.43 Mztics	93
40.44 Offsets	93
40.45 Origin	93
40.46 Output	93
40.47 Parametric	94
40.48 Plot	94
40.49 Pm3d	95
40.50 Palette	97
40.50.1 Rgbformulae	99
40.50.2 Defined	99
40.50.3 Functions	00
40.50.4 File	01
40.50.5 Gamma-correction	01
40.50.6 Postscript	02
40.50.7 Colornames	02
40.51 Pointsize	02
40.52 Polar	02
40.53 Print	.03
40.54 Rmargin	.03
40.55 Rrange	.03
40.56 Samples	.04
40.57 Size	04
40.58 Style	٥5
40.58.1 Set style arrow	٥5
40.58.2 Set style data	06ء
40.58.3 Set style fill	06ء
40.58.4 Set style function	06ء
40.58.5 Set style line	٠07
40.58.6 Plotting styles	08
40.58.6.1 Boxerrorbars	.08
40.58.6.2 Boxes	.08
40.58.6.3 Boxxyerrorbars	٥9
40.58.6.4 Candlesticks	١09
40 59 6 5 Deta	110

40.58.6.6	Filledcurves
40.58.6.7	Financebars
40.58.6.8	Fsteps
40.58.6.9	Histeps
40.58.6.10	Histograms
40.58.6.11	Image
40.58.6.12	Impulses
40.58.6.13	Labels
40.58.6.14	Lines
40.58.6.15	Linespoints
40.58.6.16	Points
40.58.6.17	Steps
40.58.6.18	Rgbimage
40.58.6.19	Vectors
40.58.6.20	Xerrorbars
40.58.6.21	Xyerrorbars
40.58.6.22	Yerrorbars
40.58.6.23	Xerrorlines
40.58.6.24	Xyerrorlines
40.58.6.25	Yerrorlines
40.59 Surface	
$40.65 \text{ Timestamp} \dots$	
_	
40.74 Vrange	
40.75 X2data	
40.78 X2mtics	
40.79 X2range	
40.80 X2tics	

	31 X2zeroaxis	
	82 Xdata	
	33 Xdtics	
	34 Xlabel	
	85 Xmtics	
40	86 Xrange	122
40	87 Xtics	123
40	88 Xzeroaxis	12
	89 Y2data	
40	90 Y2dtics	12
40	91 Y2label	12
40	92 Y2mtics	12
40	93 Y2range	12
40	94 Y2tics	126
40	95 Y2zeroaxis	126
40	96 Ydata	126
40	97 Ydtics	126
40	98 Ylabel	126
40	99 Ymtics	126
40	100Yrange	120
40	101Ytics	120
40	10 2 Yzeroaxis	120
40	$10\mathbf{Z}$ data	120
40	10 Z dtics	120
40	105Cbdata	12'
40	106Cbdtics	12'
40	1.07Zero	12'
40	10 % eroaxis	12'
40	10 % label	12'
40	11(Zmtics	12'
40	11 Z range	128
40	11 Z tics	128
40	113Cblabel	128
40	114Cbmtics	128
40	115Cbrange	128
	116Cbtics	
41 S	ell :	L 2 8
42 S	ot	L 2 9
	l Data-file	
	42.1.1 Binary matrix	

		42.1.3 Matrix_ascii 42.1.4 Matrix Grid_data Splot_overview	131 131
43	Syste		132 132
	-		1 20
44	Test		132
45	Unse	e t	132
46	Upd	ate	133
II.	I T	Cerminal types 1	L 33
47	Tern	ninal	133
	47.1	Aed767	133
	47.2	Aifm	133
		Amiga	
		Apollo	
		Aqua	
		Atari ST (via AES)	
		Be	
		47.7.1 Command-line_options	135
		47.7.2 Monochrome_options	135
		47.7.3 Color_resources	136
		47.7.4 Grayscale_resources	136
		47.7.5 Line_resources	136
	47.8	Cgi	137
	47.9	Cgm	137
		47.9.1 Font	138
		47.9.2 Fontsize	139
		47.9.3 Linewidth	139
		47.9.4 Rotate	139
		47.9.5 Solid	139
		47.9.6 Size	139
		47.9.7 Width	140
		47.9.8 Nofontlist	140
	47.10	O Corel	140
		Debug	
		2 Dospc	
	47.13	B Dumb	140
		Dxf	
	17 15	5 Dygg 200 a	1 / 1

47.16 Eepic
47.17 Emf
47.18 Emxvga
47.19 Epslatex
$47.20 \; \mathrm{Epson}\text{-}180 \mathrm{dpi} \; \ldots \; $
47.21 Excl
47.22 Fig
47.23 Ggi
47.24 Gif
$47.25\; Gnugraph (GNU\; plotutils)\; .\; .\; .\; .\; .\; .\; .\; .\; .\; .\; .\; .\; .\;$
47.26 Gpic
47.27 Gpr
47.28 Grass
47.29 Hercules
47.30 Hp2623a
47.31 Hp2648
47.32 Hp500c
47.33 Hpgl
47.34 Hpljii
47.35 Hppj
47.36 Imagen
47.37 Iris4d
47.38 Jpeg
47.39 Kyo
47.40 Latex
47.41 Linux
47.42 Macintosh
47.43 Mf
47.43.1 METAFONT Instructions
47.44 Mgr
47.45 Mif
47.46 Mp
47.46.1 Metapost Instructions
47.47 Mtos
47.48 Next
47.49 Openstep (next)
47.50 Pbm
47.51 Pdf
47.52 Pm
47.53 Png (NEW)
47.54 Postscript
47.54.1 Enhanced postscript

47.54.2 Editing postscript
47.54.3 Postscript fontfile
47.55 Pslatex and pstex
47.56 Pstricks
47.57 Qms
47.58 Regis
47.59 Rgip
47.60 Sun
47.61 Svg
47.62 Svga
47.63 Table
47.64 Tek40
47.65 Tek410x
47.66 Texdraw
47.67 Tgif
47.68 Tkcanvas
47.69 Tpic
47.70 Unixpc
47.71 Unixplot
47.72 Atari ST (via VDI)
47.73 Vgagl
47.74 VWS
47.75 Vx384
47.76 Windows
47.76.1 Graph-menu
47.76.2 Printing
47.76.3 Text-menu
47.76.4 Wgnuplot.ini
47.76.5 Windows3.0
47.77 X11
47.77.1 X11_fonts
47.77.2 Command-line_options
47.77.3 Monochrome_options
47.77.4 Color_resources
47.77.5 Grayscale_resources
47.77.6 Line_resources
47.77.7 X11 pm3d_resources
47.77.8 X11 other_resources
47.78 Xlib

CONTENTS	gnuplot 4.1	13
V Bugs		180
48 Old_bugs		180

14 gnuplot 4.1 2 INTRODUCTION

Part I

Gnuplot

1 Copyright

```
Copyright (C) 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley
```

Permission to use, copy, and distribute this software and its documentation for any purpose with or without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation.

Permission to modify the software is granted, but not the right to distribute the complete modified source code. Modifications are to be distributed as patches to the released version. Permission to distribute binaries produced by compiling modified sources is granted, provided you

- 1. distribute the corresponding source modifications from the released version in the form of a patch file along with the binaries,
- 2. add special version identification to distinguish your version in addition to the base release version number,
- 3. provide your name and address as the primary contact for the support of your modified version, and
- 4. retain our contact information in regard to use of the base software.

Permission to distribute the released version of the source code along with corresponding source modifications in the form of a patch file is granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty to the extent permitted by applicable law.

```
AUTHORS
```

```
Original Software:
   Thomas Williams, Colin Kelley.

Gnuplot 2.0 additions:
   Russell Lang, Dave Kotz, John Campbell.

Gnuplot 3.0 additions:
   Gershon Elber and many others.

Gnuplot 4.0 additions:
   See list of contributors at head of this document.
```

2 Introduction

gnuplot is a command-driven interactive function and data plotting program. It is case sensitive (commands and function names written in lowercase are not the same as those written in CAPS). All command names may be abbreviated as long as the abbreviation is not ambiguous. Any number of commands may appear on a line (with the exception that **load** or **call** must be the final command), separated by semicolons (;). Strings are indicated with quotes. They may be either single or double quotation marks, e.g.,

```
load "filename"
cd 'dir'
```

although there are some subtle differences (see syntax (p. 33) for more details).

Any command-line arguments are assumed to be names of files containing **gnuplot** commands, with the exception of standard X11 arguments, which are processed first. Each file is loaded with the **load** command, in the order specified. **gnuplot** exits after the last file is processed. When no load files are named, **gnuplot** enters into an interactive mode. The special filename "-" is used to denote standard input. See "help batch/interactive" for more details.

Many **gnuplot** commands have multiple options. Version 4 is less sensitive to the order of these options than earlier versions, but some order-dependence remains. If you see error messages about unrecognized options, please try again using the exact order listed in the documentation.

Commands may extend over several input lines by ending each line but the last with a backslash (\). The backslash must be the *last* character on each line. The effect is as if the backslash and newline were not there. That is, no white space is implied, nor is a comment terminated. Therefore, commenting out a continued line comments out the entire command (see **comments** (**p. 20**)). But note that if an error occurs somewhere on a multi-line command, the parser may not be able to locate precisely where the error is and in that case will not necessarily point to the correct line.

In this document, curly braces ({}) denote optional arguments and a vertical bar (|) separates mutually exclusive choices. **gnuplot** keywords or **help** topics are indicated by backquotes or **boldface** (where available). Angle brackets (<>) are used to mark replaceable tokens. In many cases, a default value of the token will be taken for optional arguments if the token is omitted, but these cases are not always denoted with braces around the angle brackets.

For on-line help on any topic, type **help** followed by the name of the topic or just **help** or ? to get a menu of available topics.

The new **gnuplot** user should begin by reading about **plotting** (if on-line, type **help plotting**).

See the simple demo, also available together with other demos on the web page

http://www.gnuplot.info/demo/simple.html

3 Seeking-assistance

There is a mailing list for **gnuplot** users. Note, however, that the newsgroup comp.graphics.apps.gnuplot

is identical to the mailing list (they both carry the same set of messages). We prefer that you read the messages through the newsgroup rather than subscribing to the mailing list. Instructions for subscribing to gnuplot mailing lists may be found via the gnuplot development website on SourceForge

http://sourceforge.net/projects/gnuplot

The address for mailing to list members is:

gnuplot-info@lists.sourceforge.net

Bug reports and code contributions should be mailed to:

gnuplot-bugs@lists.sourceforge.net

The list of those interested in beta-test versions is:

gnuplot-beta@lists.sourceforge.net

There is also the canonical (if occasionally out-of-date) gnuplot web page at

http://www.gnuplot.info

Before seeking help, please check the

FAQ (Frequently Asked Questions) list.

When posting a question, please include full details of the version of **gnuplot**, the machine, and operating system you are using. A *small* script demonstrating the problem may be useful. Function plots are preferable to datafile plots. If email-ing to gnuplot-info, please state whether or not you are subscribed to the list, so that users who use news will know to email a reply to you. There is a form for such postings on the WWW site.

4 New Features

Gnuplot version 4.1 contained many features introduced since the preceding official version 4.0. This section lists major additions and gives a partial list of changes and minor new features.

4.1 New plot styles

4.1.1 Histogram

See histograms (p. 111).

4.1.2 Label plots

See labels (p. 113).

4.1.3 Image data mapped onto plot

See **image** (p. 113).

4.1.4 Filled curves

See filledcurves (p. 110).

4.1.5 Vectors

See vectors (p. 114).

4.2 String and text data read from datafiles

See datastrings (p. 21)

4.3 Auto-layout of multiple plots on a page

See multiplot (p. 91).

4.4 Input from binary data files

See binary (p. 47).

4.5 New or revised terminal drivers

- 4.5.1 Consolidated gif/jpeg/png driver
- 4.5.2 New Enhanced MetaFile (EMF) driver
- 4.5.3 Adobe Illustrator (ai) driver deprecated

5 Features introduced in version 4.0

Gnuplot version 4.0 contained many features introduced since the preceding official version 3.7. These are summarized here.

5.1 Mouse and hotkey support in interactive terminals

Interaction with the current plot via mouse and hotkeys is supported for the X11, OS/2 Presentation Manager, ggi and Windows terminals. See **mouse input** (p. 28) for more information on mousing. See help for **bind** (p. 29) for information on hotkeys. Also see the documentation for individual mousing terminals **ggi** (p. 147), **pm** (p. 160), **windows** (p. 172) and x11 (p. 175).

Sample script: mousevariables.dem

5.2 New terminals

aqua: New terminal for Mac OS X. Requires AquaTerm 1.0 or later.

epslatex: New terminal. Prepares eps figures for inclusion in LaTeX documents.

gif: Consolidated with png/jpeg terminals. Requires libgd.

ggi: New full-screen interactive terminal for Linux. Interface to the General Graphics Interface Library.

pdf: New terminal exporting Adobe Portable Document Format. Requires libpdf.

png and jpeg: Support for GIF, PNG and JPEG image output is provided by a new driver via libgd. The new driver supports many more features than the old png driver, including TrueType fonts. Requires libgd.

svg: New terminal exporting Scalable Vector Graphics.

5.3 New plot style pm3d

The **splot** command is now capable of plotting 2D maps and 3D surfaces colored by greyscale or color palettes. See help for **set pm3d** (**p. 95**), **set palette** (**p. 97**), **set cbrange** (**p. 128**), **set view map** (**p. 119**), **set colorbox** (**p. 72**) and **test palette** (**p. 132**).

Sample scripts: pm3d.dem pm3dcolors.dem pm3dgamma.dem

5.4 Filled boxes

A solid color or patterned fill style can be set for any plot style that contains boxes. See **boxes** (p. 108), boxerrorbars (p. 108), boxxyerrorbars (p. 109), candlesticks (p. 109), set style fill (p. 106). Sample scripts: fillstyle.dem candlesticks.dem

5.5 New plot option smooth frequency

Input data can be filtered through several built-in routines for interpolation or approximation of data. See smooth (p. 52), frequency (p. 53), unique (p. 53).

Sample scripts: step.dem mgr.dem

5.6 Improved text options

Most gnuplot plot commands that produce text labels now accept modifiers to specify text color, font, size, and rotation angle. See **set label (p. 85)**. Not all terminal types support these options, however. The enhanced text mode previously available for the postscript and pm terminals has been extended to other terminal types as well. Terminal types currently supported include aqua, dumb, jpeg, pdf, pm, png, postscript, and x11. See **enhanced text (p. 163)**.

Sample scripts: textcolor.dem textrotate.dem

5.7 More text encodings

Several terminals, including **postscript**, **x11** and **pm**, support additional text **encodings**: ISO 8859-1 (Latin 1), ISO 8859-2 (Latin 2), ISO 8859-15 (variant of 8859-1 with Euro sign), KOI8-R and KOI8-U (cyrillic), and miscellaneous codepages. See **encoding** (p. 77) for more details.

5.8 Arrows

Single- or double-ended arrows can be placed on a plot individually from the command line or from a data file via the plot with vectors style. See set style arrow (p. 105), plotting styles vectors (p. 114).

Sample scripts: arrowstyle.dem vector.dem

5.9 Data file format

The new set datafile command can be used to specify information about the format of input data files, including the characters used to separate fields, to indicate comment lines, and to specify missing data. Gnuplot now attempts to recognize text fields with embedded blanks as single entities based on the datafile format settings. This allows input from csv (comma-separated value) files such as those exported by spreadsheet programs. See set datafile (p. 73). See also the binary (p. 47) option in version 4.1.

5.10 New commands

set view map selects a top-view 2D projection of 3D surface plot.

set term push and set term pop save and restore the current terminal type.

load and save commands accept piped input and output, respectively.

5.11 Other changes and additions

Since gnuplot 4.0, **unset** <**something**> is preferred to **set no**<**something**>. The older form has been deprecated. Version 4.1 continues to allow the older syntax, but such backwards compatibility may be lost in future versions.

Commands of the form **set <something> <style>** also are deprectated in favor of the more general form **set style <something> <options>**. Many more plot elements now have style options of their own, including arrows, filled areas, lines, and points. There are also style settings for input data and formatting. Please see **set style (p. 105)**, **set decimalsign (p. 75)**, and **set datafile (p. 73)**.

The MS Windows package includes an additional executable **pgnuplot.exe** to support piping command through standard input, which is otherwise not available for graphical applications on this system.

5.12 Accompanying documentation

In directory docs/psdocs/ you may find new information in the gnuplot output postscript file guide, list of postscript symbols in different encodings.

Improved FAQ. Please read it before asking your question in a public forum.

There are plenty of new demos *.dem in the demo/ directory. Please run them, for example by

load "all.dem"

before asking for help. Plots produced by the demo scripts can also be viewed at

http://www.gnuplot.info/demo/

6 Batch/Interactive Operation

gnuplot may be executed in either batch or interactive modes, and the two may even be mixed together on many systems.

Any command-line arguments are assumed to be names of files containing **gnuplot** commands (with the exception of standard X11 arguments, which are processed first). Each file is loaded with the **load** command, in the order specified. **gnuplot** exits after the last file is processed. When no load files are named, **gnuplot** enters into an interactive mode. The special filename "-" is used to denote standard input.

Both the **exit** and **quit** commands terminate the current command file and **load** the next one, until all have been processed.

Examples:

To launch an interactive session:

gnuplot

To launch a batch session using two command files "input1" and "input2":

gnuplot input1 input2

To launch an interactive session after an initialization file "header" and followed by another command file "trailer":

gnuplot header - trailer

7 Command-line-editing

Command-line editing is supported by the Unix, Atari, VMS, MS-DOS and OS/2 versions of **gnuplot**. Also, a history mechanism allows previous commands to be edited and re-executed. After the command line has been edited, a newline or carriage return will enter the entire line without regard to where the cursor is positioned.

(The readline function in **gnuplot** is not the same as the readline used in GNU Bash and GNU Emacs. If the GNU version is desired, it may be selected instead of the **gnuplot** version at compile time.)

The editing commands are as follows:

	Command-line Editing Commands	
Character	Function	
	Line Editing	
^B	move back a single character.	
^F	move forward a single character.	
^A	move to the beginning of the line.	
^E	move to the end of the line.	
^H, DEL	delete the previous character.	
^D	delete the current character.	
^K	delete from current position to the end of line.	
^L, ^R	redraw line in case it gets trashed.	
^U	delete the entire line.	
^W	delete from the current word to the end of line.	
	History	
^P	move back through history.	
^N	move forward through history.	

On the IBM PC, the use of a TSR program such as DOSEDIT or CED may be desired for line editing. The default makefile assumes that this is the case; by default **gnuplot** will be compiled with no line-editing capability. If you want to use **gnuplot**'s line editing, set READLINE in the makefile and add readline.obj to the link file. The following arrow keys may be used on the IBM PC and Atari versions if readline is used:

Arrow key	Function
Left	same as ^B.
Right	same as `F.
Ctrl Left	same as ^A.
Ctrl Right	same as ^E.
Up	same as ^P.
Down	same as 'N.

The Atari version of readline defines some additional key aliases:

Key	Function
Undo	same as ^L.
Home	same as ^A.
Ctrl Home	same as ^E.
Esc	same as ^U.
Help	'help' plus return.
Ctrl Help	$^{\circ}\mathbf{help}^{\circ}.$

8 Comments

Comments are supported as follows: a # may appear in most places in a line and **gnuplot** will ignore the rest of the line. It will not have this effect inside quotes, inside numbers (including complex numbers), inside command substitutions, etc. In short, it works anywhere it makes sense to work.

See also set datafile commentschars (p. 75) for specifying comment characters in data files.

9 Coordinates

The commands **set arrow**, **set key**, and **set label** allow you to draw something at an arbitrary position on the graph. This position is specified by the syntax:

```
{<system>} <x>, {<system>} <y> {,{<system>} <z>}
```

Each <system> can either be first, second, graph, screen, or character.

first places the x, y, or z coordinate in the system defined by the left and bottom axes; **second** places it in the system defined by the second axes (top and right); **graph** specifies the area within the axes — 0,0 is bottom left and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area; use negative z to get to the base — see **set ticslevel (p. 116)**); **screen** specifies the screen area (the entire area — not just the portion selected by **set size**), with 0,0 at bottom left and 1,1 at top right; and **character** gives the position in character widths and heights from the bottom left of the screen area (screen 0,0), **character** coordinates depend on the chosen font size.

If the coordinate system for x is not specified, **first** is used. If the system for y is not specified, the one used for x is adopted.

In some cases, the given coordinate is not an absolute position but a relative value (e.g., the second position in **set arrow** ... **rto**). In most cases, the given value serves as difference to the first position. If the given coordinate resides in a logarithmic axis the value is interpreted as factor. For example,

```
set logscale x
set arrow 100,5 rto 10,2
```

plots an arrow from position 100,5 to position 1000,7 since the x axis is logarithmic while the y axis is linear.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string according to the **timefmt** format string. See **set xdata** (**p. 120**) and **set timefmt** (**p. 117**). **gnuplot** will also accept an integer expression, which will be interpreted as seconds from 1 January 2000.

10 Datastrings

The configuration option—enable-datastrings (currently EXPERIMENTAL) allows gnuplot to read and process text fields in datafiles. A text field consists of either an arbitrary string of printable characters containing no whitespace or an arbitrary string of characters, possibly including whitespace, delimited by double quotes. The following sample line from a datafile is interpreted to contain four columns, with a text field in column 3:

```
1.000 2.000 "Third column is all of this text" 4.00
```

Text fields can be positioned within a 2-D or 3-D plot using the commands:

```
plot 'datafile' using 1:2:4 with labels splot 'datafile using 1:2:3:4 with labels
```

A column of text data can also be used to label the ticmarks along one or more of the plot axes. The example below plots a line through a series of points with (X,Y) coordinates taken from columns 3 and 4 of the input datafile. However, rather than generating regularly spaced tics along the x axis labeled numerically, gnuplot will position a tic mark along the x axis at the X coordinate of each point and label the tic mark with text taken from column 1 of the input datafile.

```
set xtics
plot 'datafile' using 3:4:xticlabels(1) with linespoints
```

There is also an option that will interpret the first entry in a column of input data as a text field, and use it as the key title for data plotted from that column. The example given below will use the first entry in column 2 to generate a title in the key box, while processing the remainder of columns 2 and 4 to draw the required line:

```
plot 'datafile' using 1:(f(\$2)/\$4) title 2 with lines
```

See set style labels (p. 113), using xticlabels (p. 56), plot title (p. 59), using (p. 54).

11 Environment

A number of shell environment variables are understood by **gnuplot**. None of these are required, but may be useful.

If GNUTERM is defined, it is used as the name of the terminal type to be used. This overrides any terminal type sensed by **gnuplot** on start-up, but is itself overridden by the .gnuplot (or equivalent) start-up file (see **start-up** (**p. 30**)) and, of course, by later explicit changes.

On Unix, AmigaOS, AtariTOS, MS-DOS and OS/2, GNUHELP may be defined to be the pathname of the HELP file (gnuplot.gih).

On VMS, the logical name GNUPLOT\$HELP should be defined as the name of the help library for **gnuplot**. The **gnuplot** help can be put inside any system help library, allowing access to help from both within and outside **gnuplot** if desired.

On Unix, HOME is used as the name of a directory to search for a gnuplot file if none is found in the current directory. On AmigaOS, AtariTOS, MS-DOS, Windows and OS/2, GNUPLOT is used. On Windows, the NT-specific variable USERPROFILE is tried, too. VMS, SYS\$LOGIN: is used. Type help start-up.

On Unix, PAGER is used as an output filter for help messages.

On Unix, AtariTOS and AmigaOS, SHELL is used for the **shell** command. On MS-DOS and OS/2, COMSPEC is used for the **shell** command.

On MS-DOS, if the BGI or Watcom interface is used, PCTRM is used to tell the maximum resolution supported by your monitor by setting it to S<max. horizontal resolution>. E.g. if your monitor's maximum resolution is 800x600, then use:

```
set PCTRM=S800
```

If PCTRM is not set, standard VGA is used.

FIT_SCRIPT may be used to specify a **gnuplot** command to be executed when a fit is interrupted — see **fit** (**p. 36**). FIT_LOG specifies the default filename of the logfile maintained by fit.

GNUPLOT_LIB may be used to define additional search directories for data and command files. The variable may contain a single directory name, or a list of directories separated by a platform-specific path separator, eg. ':' on Unix, or ';' on DOS/Windows/OS/2/Amiga platforms. The contents of GNUPLOT_LIB are appended to the **loadpath** variable, but not saved with the **save** and **save set** commands.

Several gnuplot terminal drivers access TrueType fonts via the gd library. For these drivers the font search path is controlled by the environmental variable GDFONTPATH. Furthermore, a default font for these drivers may be set via the environmental variable GNUPLOT_DEFAULT_GDFONT.

The postscript terminal uses its own font search path. It is controlled by the environmental variable GNUPLOT_FONTPATH. The format is the same as for GNUPLOT_LIB. The contents of GNUPLOT_FONTPATH are appended to the **fontpath** variable, but not saved with the **save** and **save set** commands.

12 Expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid. The precedence of these operators is determined by the specifications of the C programming language. White space (spaces and tabs) is ignored inside expressions.

Complex constants are expressed as $\{<\text{real}>,<\text{imag}>\}$, where <real> and <imag> must be numerical constants. For example, $\{3,2\}$ represents 3+2i; $\{0,1\}$ represents 'i' itself. The curly braces are explicitly required here.

Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and C. Integers are entered as "1", "-10", etc; reals as "1.0", "-10.0", "1e1", 3.5e-1, etc. The most important difference between the two forms is in division: division of integers truncates: 5/2 = 2; division of reals does not: 5.0/2.0 = 2.5. In mixed expressions, integers are "promoted" to reals before evaluation: 5/2e0 = 2.5. The result of division of a negative integer by a positive one may vary among compilers. Try a test like "print -5/2" to determine if your system chooses -2 or -3 as the answer.

The integer expression "1/0" may be used to generate an "undefined" flag, which causes a point to ignored; the **ternary** operator gives an example.

The real and imaginary parts of complex expressions are always real, whatever the form in which they are entered: in $\{3,2\}$ the "3" and "2" are reals, not integers.

Gnuplot can also perform simple operations on strings and string variables. For example, the expression ("A" . "B" eq "AB") evaluates as true, illustrating the string concatenation operator and the string equality operator.

A string which contains a numerical value is promoted to the corresponding integer or real value if used in a numerical expression. Thus ("3" + "4" == 7) and (6.78 == "6.78") both evaluate to true. An integer, but not a real or complex value, is promoted to a string if used in string concatenation. A typical case is the use of integers to construct file names or other strings; e.g. ("file" . 4 eq "file4") is true.

12.1 Functions

The functions in **gnuplot** are the same as the corresponding functions in the Unix math library, except that all functions accept integer, real, and complex arguments, unless otherwise noted.

For those functions that accept or return angles that may be given in either degrees or radians $(\sin(x), \cos(x), \tan(x), a\sin(x), a\cos(x), \tan(x), a\tan(x), a\tan(x))$, the unit may be selected by **set angles**, which defaults to radians.

s
s
s
S
s
ans
t)
$\operatorname{art})$
,
c)
,
$_{i,x})$
)
a1(m)
al(x)
ored
orea

String functions			
Function	Arguments	Returns	
gprintf("format",x)	any	string result from applying gnuplot's format parser	
sprintf("format",x,)	multiple	string result from C-language sprintf	

other gnuplot functions			
Function	Arguments	Returns	
column(x)	int	column x during datafile manipulation.	
defined(X)	variable name	returns 1 if a variable X is defined, 0 otherwise.	
tm_hour(x)	int	the hour	
$tm_mday(x)$	int	the day of the month	
$tm_min(x)$	int	the minute	
$tm_{-}mon(x)$	int	the month	
$tm_{sec}(x)$	int	the second	
$tm_wday(x)$	int	the day of the week	
$tm_yday(x)$	int	the day of the year	
$tm_year(x)$	int	the year	
valid(x)	int	test validity of $\operatorname{column}(x)$ during datafile manip.	

See also

airfoil.dem: use of functions and complex variables for airfoils demo.

12.1.1 Random number generator

The behavior of the built-in function $\operatorname{rand}(\mathbf{x})$ has changed as of version 3.8l. Older scripts that expected $\operatorname{rand}(\mathbf{x}>0)$ to produce sequential pseudo-random numbers from the same seeded sequence must be changed to call $\operatorname{rand}(0)$ instead. The current behavior is as follows:

12.2 Operators

The operators in **gnuplot** are the same as the corresponding operators in the C programming language, except that all operators accept integer, real, and complex arguments, unless otherwise noted. The ** operator (exponentiation) is supported, as in FORTRAN.

Parentheses may be used to change order of evaluation.

12.2.1 Unary

The following is a list of all the unary operators and their usages:

Unary Operators			
Symbol	Example	Explanation	
_	-a	unary minus	
+	+a	unary plus (no-operation)	
~	~a	* one's complement	
!	!a	* logical negation	
!	a!	* factorial	
\$	\$3	* call arg/column during 'using' manipulation	

(*) Starred explanations indicate that the operator requires an integer argument.

Operator precedence is the same as in Fortran and C. As in those languages, parentheses may be used to change the order of operation. Thus $-2^{**}2 = -4$, but $(-2)^{**}2 = 4$.

The factorial operator returns a real number to allow a greater range.

^{&#}x27;rand(0)' returns a pseudo random number in the interval [0:1] generated from the current value of two internal 32-bit seeds.

^{&#}x27;rand(-1)' resets both seeds to a standard value.

^{&#}x27;rand(x)' for x>0 sets both seeds to a value based on the value of x.

^{&#}x27;rand($\{x,y\}$)' for x>0 sets seed1 to x and seed2 to y.

12.2.2 Binary

The following is a list of all the binary operators and their usages:

Binary Operators			
Symbol	Example	Explanation	
**	a**b	exponentiation	
*	a*b	multiplication	
/	a/b	division	
%	a%b	* modulo	
+	a+b	addition	
_	a-b	subtraction	
==	a==b	equality	
!=	a!=b	inequality	
<	a <b< td=""><td>less than</td></b<>	less than	
<=	a<=b	less than or equal to	
>	a>b	greater than	
>=	a>=b	greater than or equal to	
&	a&b	* bitwise AND	
^	a^b	* bitwise exclusive OR	
1	alb	* bitwise inclusive OR	
&&	a&&b	* logical AND	
11	a b	* logical OR	
	A.B	string concatenation	
eq	A eq B	string equality	
ne	A ne B	string inequality	

(*) Starred explanations indicate that the operator requires integer arguments. Capital letters A and B indicate that the operator requires string arguments.

Logical AND (&&) and OR (||) short-circuit the way they do in C. That is, the second && operand is not evaluated if the first is false; the second || operand is not evaluated if the first is true.

12.2.3 Ternary

There is a single ternary operator:

Ternary Operator			
Symbol	Example	Explanation	
?:	a?b:c	ternary operation	

The ternary operator behaves as it does in C. The first argument (a), which must be an integer, is evaluated. If it is true (non-zero), the second argument (b) is evaluated and returned; otherwise the third argument (c) is evaluated and returned.

The ternary operator is very useful both in constructing piecewise functions and in plotting points only when certain conditions are met.

Examples:

```
Plot a function that is to equal \sin(x) for 0 <= x < 1, 1/x for 1 <= x < 2, and undefined elsewhere: f(x) = 0 <= x & x < 1 ? \sin(x) : 1 <= x & x < 2 ? 1/x : 1/0 plot f(x)
```

Note that **gnuplot** quietly ignores undefined values, so the final branch of the function (1/0) will produce no plottable points. Note also that f(x) will be plotted as a continuous function across the discontinuity if a line style is used. To plot it discontinuously, create separate functions for the two pieces. (Parametric functions are also useful for this purpose.)

For data in a file, plot the average of the data in columns 2 and 3 against the datum in column 1, but only if the datum in column 4 is non-negative:

26 gnuplot 4.1 12 EXPRESSIONS

```
plot 'file' using 1:( $4<0 ? 1/0 : ($2+$3)/2 )
```

Please see plot datafile using (p. 54) for an explanation of the using (p. 54) syntax.

12.3 Gnuplot-defined variables

```
The variable pi is defined to be pi, see print pi
```

Additionally, gnuplot may define some variables under various operations.

Working with interactive terminals with **mouse** functionality defines variables with names that begin "MOUSE_", see **mouse variables** (p. 30) for details.

The fit mechanism uses several variables with names that begin "FIT_". It is safest to avoid using such names. "FIT_LIMIT", however, is one that you may wish to redefine. Under set fit errorvariables, the error for each fitted parameter will be stored in a variable named like the parameter, but with "_err" appended. See the documentation on fit (p. 36) for details.

See user-defined variables (p. 26), mouse variables (p. 30), and fit (p. 36).

12.4 User-defined variables and functions

New user-defined variables and functions of one through five variables may be declared and used anywhere, including on the **plot** command itself.

User-defined function syntax:

```
< \text{func-name} < ( < \text{dummy1} > {,< \text{dummy2}} ) = < \text{expression} >
```

where <expression> is defined in terms of <dummy1> through <dummy5>.

User-defined variable syntax:

<variable-name> = <constant-expression>

Examples:

```
w = 2
q = floor(tan(pi/2 - 0.1))
f(x) = sin(w*x)
sinc(x) = sin(pi*x)/(pi*x)
delta(t) = (t == 0)
ramp(t) = (t > 0) ? t : 0
min(a,b) = (a < b) ? a : b
comb(n,k) = n!/(k!*(n-k)!)
len3d(x,y,z) = sqrt(x*x+y*y+z*z)
plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, f(x)
file = "mydata.inp"
file(n) = sprintf("run_%d.dat",n)</pre>
```

The final two examples illustrate a user-defined string variable and a user-defined string function.

Note that the variable **pi** is already defined. But it is in no way magic; you may redefine it to be whatever you like. Some other variables may be defined under various gnuplot operations like mousing in interactive terminals or fitting; see **gnuplot-defined variables** (**p. 26**) for details.

You can check for existence of a given variable by the defined(v) expression, for example

```
a = 10
if (defined(a)) print "a is defined"
if (!defined(b)) print "b is not defined"
```

Valid names are the same as in most programming languages: they must begin with a letter, but subsequent characters may be letters, digits, "\$", or "_".

See show functions (p. 81), functions (p. 22), gnuplot-defined variables (p. 26).

13 Glossary

Throughout this document an attempt has been made to maintain consistency of nomenclature. This cannot be wholly successful because as **gnuplot** has evolved over time, certain command and keyword names have been adopted that preclude such perfection. This section contains explanations of the way some of these terms are used.

A "page" or "screen" is the entire area addressable by **gnuplot**. On a monitor, it is the full screen; on a plotter, it is a single sheet of paper.

A screen may contain one or more "plots". A plot is defined by an abscissa and an ordinate, although these need not actually appear on it, as well as the margins and any text written therein.

A plot contains one "graph". A graph is defined by an abscissa and an ordinate, although these need not actually appear on it.

A graph may contain one or more "lines". A line is a single function or data set. "Line" is also a plotting style. The word will also be used in sense "a line of text". Presumably the context will remove any ambiguity.

The lines on a graph may have individual names. These may be listed together with a sample of the plotting style used to represent them in the "key", sometimes also called the "legend".

The word "title" occurs with multiple meanings in **gnuplot**. In this document, it will always be preceded by the adjective "plot", "line", or "key" to differentiate among them.

A 2-d graph may have up to four labelled axes. The names of the four axes for these usages are "x" for the axis along the bottom border of the plot, "y" for the left border, "x2" for the top border, and "y2" for the right border.

A 3-d graph may have up to three labelled axes – "x", "y" and "z". It is not possible to say where on the graph any particular axis will fall because you can change the direction from which the graph is seen with **set view**.

When discussing data files, the term "record" will be resurrected and used to denote a single line of text in the file, that is, the characters between newline or end-of-record characters. A "point" is the datum extracted from a single record. A "datablock" is a set of points from consecutive records, delimited by blank records. A line, when referred to in the context of a data file, is a subset of a datablock.

14 Linetype, colors, and styles

Gnuplot commands use the term "linetype" to refer to the color of a line or other plot element. Each terminal type provides a certain number of pre-defined line types (colors). These can be previewed by issuing the **test** command after setting the terminal type. The pre-defined colors are not guaranteed to be consistent for all terminal types, but all terminals use the special index -1 to mean the primary foreground color (normally black). By default, successive functions or datafiles plotted by a single command will be assigned successive linetypes. You can override this default by specifying a particular linetype for any function, datafile, or plot element.

Examples:

```
plot "foo", "bar"  # plot two files using linetypes 1, 2
plot sin(x) linetype 4  # terminal-specific linetype color 4
plot sin(x) lt -1  # black
```

For many terminal types it is also possible to assign user-defined colors using explicit rgb (red, green, blue) values, named colors, or color values that refer to the current PM3D palette.

Examples:

28 gnuplot 4.1 15 MOUSE INPUT

See show palette colornames (p. 102), set palette (p. 97), cbrange (p. 128).

Lines can have additional properties such as linewidth. You can associate these various properties, as well as equivalent properties for point symbols, into user-defined "line styles" using the command **set style line**. Once you have defined a linestyle, you can use it in a plot command to control the appearance of one or more plot elements.

Examples:

```
# define a new line style with terminal-independent color cyan,
# linewidth 3, and associated point type 6 (a circle with a dot in it).
set style line 5 lt rgb "cyan" lw 3 pt 6
plot sin(x) with linespoints ls 5  # user-defined line style 5
```

See linestyle (p. 107), set style line (p. 107).

14.1 Colorspec

Many commands allow you to specify a linetype with an explicit color. This option is only available if your gnuplot has been built with pm3d support, and only for terminals that support RGB color and/or pm3d palettes.

Syntax:

```
... {linetype | lt} <colorspec>
```

where <colorspec> has one of the following forms:

```
rgbcolor "colorname"
rgbcolor "#RRGGBB"
palette frac <val>  # <val> runs from 0 to 1
palette cb <value>  # <val> lies within cbrange
palette z
```

"colorname" refers to one of the color names built in to gnuplot. For a list of the available names, see show palette colornames (p. 102).

"#RRGGBB" is a hexadecimal constant preceded by the "#" symbol. The RRGGBB represents the red, green, and blue components of the color, each on a scale from 0 - 255. For example, magenta = full-scale red + full-scale blue would be represented by #FF00FF, which is the hexadecimal representation of (255 << 16) + (0 << 8) + (255).

The color palette is a linear gradient of colors that smoothly maps a single numerical value onto a particular color. Two such mappings are always in effect. The first maps a fractional value between 0 and 1 onto the full range of the color palette. The second maps a separate color axis onto the same palette using an arbitrary scale and range. This mapping is set by the command **set cbrange**. See also **set colorbox** (**p. 72**). You can use either of these mappings to assign a constant color from the current palette.

The final option, "palette z", is available only in 3d plots, and treats the z value of each plot segment or plot element as an index into the cbrange mapping of the palette. This allows smoothly-varying color along a 3d line or surface.

15 Mouse input

The x11, pm, windows, and ggi terminals allow interaction with the current plot using the mouse. They also support the definition of hotkeys to activate pre-defined functions by hitting a single key while the mouse focus is in the active plot window. It is even possible to combine mouse input with batch command scripts, by invoking the command pause mouse and then using the mouse variables returned by mouse clicking as parameters for subsequent scripted actions. See bind (p. 29) and mouse variables (p. 30). See also the command set mouse (p. 89).

15.1Bind

The bind allows defining or redefining a hotkey, i.e. a sequence of gruplot commands which will be executed when a certain key or key sequence is pressed while the driver's window has the input focus. Note that **bind** is only available if gnuplot was compiled with **mouse** support and it is used by all mouse-capable terminals. Bindings overwrite the builtin bindings (like in every real editor), except <space> and 'q' which cannot be rebound. Mouse buttons cannot be rebound.

Note that multikey-bindings with modifiers have to be quoted.

```
Syntax:
```

```
bind [<key-sequence>] ["<gnuplot commands>"]
Examples:
- set bindings:
   bind a "replot"
   bind "ctrl-a" "plot x*x"
   bind "ctrl-alt-a" 'print "great"'
   bind Home "set view 60,30; replot"
- show bindings:
   bind "ctrl-a"
                           # shows the binding for ctrl-a
   bind
                           # shows all bindings
- remove bindings:
   bind "ctrl-alt-a" ""
                           # removes binding for ctrl-alt-a
                             (note that builtins cannot be removed)
   bind!
                           # installs default (builtin) bindings
- bind a key to toggle something:
 v=0
bind "ctrl-r" "v=v+1;if(v%2)set term x11 noraise; else set term x11 raise"
Modifiers (ctrl / alt) are case insensitive, keys not:
   ctrl-alt-a == CtRl-alT-a
   ctrl-alt-a != ctrl-alt-A
List of modifiers (alt == meta):
   ctrl, alt
List of supported special keys:
  "BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
  "Sys_Req", "Escape", "Delete", "Home", "Left", "Up", "Right", "Down",
  "PageUp", "PageDown", "End", "Begin",
  "KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
  "KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
  "KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
  "KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",
  "KP_Divide",
  "KP_1" - "KP_9", "F1" - "F12"
See also help for mouse (p. 89) and if (p. 43).
```

15.2 Mouse variables

When mousing is active, clicking in the active window will set several user variables that can be accessed from the gnuplot command line. The coordinates of the mouse at the time of the click are stored in MOUSE_X MOUSE_Y MOUSE_X2 and MOUSE_Y2. The mouse button clicked, and any meta-keys active at that time, are stored in MOUSE_BUTTON MOUSE_SHIFT MOUSE_ALT and MOUSE_CTRL. These variables are set to undefined at the start of every plot, and only become defined in the event of a mouse click in the active plot window. To determine from a script if the mouse has been clicked in the active plot window, it is sufficient to test for any one of these variables being defined.

```
plot 'something'
set pause mouse
if (defined(MOUSE_BUTTON)) call 'something_else'; \
else print "No mouse click."

It is also possible to track keystrokes in the plot window using the mousing code.
plot 'something'
pause mouse keypress
print "Keystroke ", MOUSE_KEY, " at ", MOUSE_X, " ", MOUSE_Y
```

If pause mouse keypress is terminated by a mouse click rather than by a keypress, then MOUSE_KEY will contain the button number, otherwise it will contain the ascii character value of the key that was pressed. If the pause command is terminated abnormally (e.g. by ctrl-C or by externally closing the plot window) then MOUSE_KEY will equal -1.

16 Plotting

There are three **gnuplot** commands which actually create a plot: **plot**, **splot** and **replot**. **plot** generates 2-d plots, **splot** generates 3-d plots (actually 2-d projections, of course), and **replot** appends its arguments to the previous **plot** or **splot** and executes the modified command.

Much of the general information about plotting can be found in the discussion of **plot**; information specific to 3-d can be found in the **splot** section.

plot operates in either rectangular or polar coordinates – see set polar (p. 102) for details of the latter. splot operates only in rectangular coordinates, but the set mapping command allows for a few other coordinate systems to be treated. In addition, the using option allows both plot and splot to treat almost any coordinate system you'd care to define.

plot also lets you use each of the four borders – x (bottom), x2 (top), y (left) and y2 (right) – as an independent axis. The **axes** option lets you choose which pair of axes a given function or data set is plotted against. A full complement of **set** commands exists to give you complete control over the scales and labelling of each axis. Some commands have the name of an axis built into their names, such as **set xlabel**. Other commands have one or more axis names as options, such as **set logscale xy**. Commands and options controlling the z axis have no effect on 2-d graphs.

splot can plot surfaces and contours in addition to points and/or lines. In addition to splot, see set isosamples (p. 83) for information about defining the grid for a 3-d function; splot datafile (p. 129) for information about the requisite file structure for 3-d data values; and set contour (p. 73) and set cntrparam (p. 70) for information about contours.

In **splot**, control over the scales and labels of the axes are the same as with **plot**, except that commands and options controlling the x2 and y2 axes have no effect whereas of course those controlling the z axis do take effect.

17 Start-up

When **gnuplot** is run, it looks for an initialization file to load. This file is called **.gnuplot** on Unix and AmigaOS systems, and **GNUPLOT.INI** on other systems. If this file is not found in the current directory, the program will look for it in the HOME directory (under AmigaOS, Atari(single)TOS, MS-DOS,

Windows and OS/2, the environment variable **GNUPLOT** should contain the name of this directory; on Windows NT, it will use **USERPROFILE** if GNUPLOT isn't defined). Note: if NOCWDRC is defined during the installation, **gnuplot** will not read from the current directory.

If the initialization file is found, **gnuplot** executes the commands in it. These may be any legal **gnuplot** commands, but typically they are limited to setting the terminal and defining frequently-used functions or variables.

18 String constants and string variables

A new feature in gnuplot 4.1 is the introduction of string variables and string functions. Most gnuplot commands that previously required a string constant will now also accept a string variable, a string expression, or a function that returns a string. For example, the following four methods of creating a plot all result in the same plot title:

```
four = "4"
graph4 = "Title for plot #4"
graph(n) = sprintf("Title for plot #%d",n)

plot 'data.4' title "Title for plot #4"
plot 'data.4' title graph4
plot 'data.4' title "Title for plot #".four
plot 'data.4' title graph(4)
```

Since integers are promoted to strings when operated on by the string concatenation operator, the following method also works:

```
N = 4 plot 'data.'.N title "Title for plot #".N
```

In general, elements on the command line will only be evaluated as possible string variables if they are not otherwise recognizable as part of the normal gnuplot syntax. So the following sequence of commands is legal, although probably should be avoided so as not to cause confusion:

```
plot = "my_datafile.dat"
title = "My Title"
plot plot title title
```

There are three binary operators that require string operands: the string concatenation operator ".", the string equality operator "eq" and the string inequality operator "ne". The following example will print TRUE.

```
if ("A"."B" eq "AB") print "TRUE"
```

See also the two string formatting functions gprintf (p. 79) and sprintf (p. 23).

19 Substitution and Command line macros

When a command line to gnuplot is first read, i.e. before it is interpreted or executed, two forms of lexical substitution are performed. These are triggered by the presence of text in backquotes (ascii character 96) or preceded by @ (ascii character 64).

19.1 Substitution of system commands in backquotes

Command-line substitution is specified by a system command enclosed in backquotes. This command is spawned and the output it produces replaces the backquoted text on the command line. Some implementations also support pipes; see plot datafile special-filenames (p. 53).

Command-line substitution can be used anywhere on the **gnuplot** command line, except inside strings delimited by single quotes.

Example:

This will run the program **leastsq** and replace **leastsq** (including backquotes) on the command line with its output:

```
f(x) = 'leastsq'
or, in VMS
    f(x) = 'run leastsq'
These will generate labels with the current time and userid:
    set label "generated on 'date +%Y-%m-%d' by 'whoami'" at 1,1
    set timestamp "generated on %Y-%m-%d by 'whoami'"
```

19.2 Substitution of string variables as macros

Substitution of command line macros is disabled by default, but may be enabled using the **set macros** command. If macro substitution is enabled, the character @ is used to trigger substitution of the current value of a string variable into the command line. The text in the string variable may contain any number of lexical elements. This allows string variables to be used as command line macros. Only string constants may be expanded using this mechanism, not string-valued expressions. For example:

```
set macros
style1 = "lines lt 4 lw 2"
style2 = "points lt 3 pt 5 ps 2"
range1 = "using 1:3"
range2 = "using 1:5"
plot "foo" @range1 with @style1, "bar" @range2 with @style2
```

The line containing @ symbols is expanded on input, so that by the time it is executed the effect is identical to having typed in full

Macro expansion does not occur inside either single or double quotes. However macro expansion does occur inside backquotes.

19.3 String variables, macros, and command line substitution

The interaction of string variables, backquotes and macro substitution is somewhat complicated. Backquotes do not block macro substitution, so

```
filename = "mydata.inp"
lines = ' wc --lines @filename | sed "s/ .*//" '
```

results in the number of lines in mydata.inp being stored in the integer variable lines. And double quotes do not block backquote substitution, so

```
mycomputer = "'uname -n'"
```

results in the string returned by the system command **uname -n** being stored in the string variable mycomputer.

However, macro substitution is not performed inside double quotes, so you cannot define a system command as a macro and then use both macro and backquote substitution at the same time.

```
machine_id = "uname -n"
mycomputer = "'@machine_id'" # doesn't work!!
```

This fails because the double quotes prevent @machine_id from being interpreted as a macro. To store a system command as a macro and execute it later you must instead include the backquotes as part of the macro itself. This is accomplished by defining the macro as shown below. Notice that the sprintf format nests all three types of quotes.

```
machine_id = sprintf('"'uname -n'"')
mycomputer = @machine_id
```

20 Syntax

Version 4 of gnuplot is much less sensitive than earlier versions to the order of keywords and suboptions. However, if you get error messages from specifying options that you think should work, please try rearranging them into the exact order listed by the documentation.

Options and any accompanying parameters are separated by spaces whereas lists and coordinates are separated by commas. Ranges are separated by colons and enclosed in brackets [], text and file names are enclosed in quotes, and a few miscellaneous things are enclosed in parentheses. Braces {} are used for a few special purposes.

Commas are used to separate coordinates on the **set** commands **arrow**, **key**, and **label**; the list of variables being fitted (the list after the **via** keyword on the **fit** command); lists of discrete contours or the loop parameters which specify them on the **set cntrparam** command; the arguments of the **set** commands **dgrid3d**, **dummy**, **isosamples**, **offsets**, **origin**, **samples**, **size**, **time**, and **view**; lists of tics or the loop parameters which specify them; the offsets for titles and axis labels; parametric functions to be used to calculate the x, y, and z coordinates on the **plot**, **replot** and **splot** commands; and the complete sets of keywords specifying individual plots (data sets or functions) on the **plot**, **replot** and **splot** commands.

Parentheses are used to delimit sets of explicit tics (as opposed to loop parameters) and to indicate computations in the **using** filter of the **fit**, **plot**, **replot** and **splot** commands.

(Parentheses and commas are also used as usual in function notation.)

Square brackets are used to delimit ranges given in **set**, **plot** or **splot** commands.

Colons are used to separate extrema in **range** specifications (whether they are given on **set**, **plot** or **splot** commands) and to separate entries in the **using** filter of the **plot**, **replot**, **splot** and **fit** commands.

Semicolons are used to separate commands given on a single command line.

Braces are used in text to be specially processed by some terminals, like **postscript**. They are also used to denote complex numbers: $\{3,2\} = 3 + 2i$.

At present you should not embed \n inside \{\} when using the **enhanced postscript** terminal.

The EEPIC, Imagen, Uniplex, LaTeX, and TPIC drivers allow a newline to be specified by \\ in a single-quoted string or \\\\ in a double-quoted string.

20.1 Quote Marks

Gnuplot uses three forms of quote marks for delimiting text strings, double-quote (ascii 34), single-quote (ascii 39), and backquote (ascii 96).

Filenames may be entered with either single- or double-quotes. In this manual the command examples generally single-quote filenames and double-quote other string tokens for clarity.

String constants and text strings used for labels, titles, or other plot elements may be enclosed in either single quotes or double quotes. Further processing of the quoted text depends on the choice of quote marks

Backslash processing of special characters like \n (newline) and $\345$ (octal character code) is performed for double-quoted strings, but not for single-quoted strings.

Text justification is the same for each line of a multi-line string. Thus the center-justified string "This is the first line of text.\nThis is the second line."

will produce

```
This is the first line of text.
This is the second line.
```

but

'This is the first line of text.\nThis is the second line.'

will produce

This is the first line of text.\nThis is the second line.

Enhanced text processing is performed for both double-quoted text and single-quoted text, but only by terminals supporting this mode. See **enhanced text** (p. 163).

Back-quotes are used to enclose system commands for substitution into the command line. See **substitution** (p. 31).

21 Time/Date data

gnuplot supports the use of time and/or date information as input data. This feature is activated by the commands **set xdata time**, **set ydata time**, etc.

Internally all times and dates are converted to the number of seconds from the year 2000. The command **set timefmt** defines the format for all inputs: data files, ranges, tics, label positions — in short, anything that accepts a data value must receive it in this format. Since only one input format can be in force at a given time, all time/date quantities being input at the same time must be presented in the same format. Thus if both x and y data in a file are time/date, they must be in the same format.

The conversion to and from seconds assumes Universal Time (which is the same as Greenwich Standard Time). There is no provision for changing the time zone or for daylight savings. If all your data refer to the same time zone (and are all either daylight or standard) you don't need to worry about these things. But if the absolute time is crucial for your application, you'll need to convert to UT yourself.

Commands like **show xrange** will re-interpret the integer according to **timefmt**. If you change **timefmt**, and then **show** the quantity again, it will be displayed in the new **timefmt**. For that matter, if you give the deactivation command (like **set xdata**), the quantity will be shown in its numerical form.

The command **set format** defines the format that will be used for tic labels, whether or not the specified axis is time/date.

If time/date information is to be plotted from a file, the **using** option *must* be used on the **plot** or **splot** command. These commands simply use white space to separate columns, but white space may be embedded within the time/date string. If you use tabs as a separator, some trial-and-error may be necessary to discover how your system treats them.

The following example demonstrates time/date plotting.

Suppose the file "data" contains records like

```
03/21/95 10:00 6.02e23
```

This file can be plotted by

```
set xdata time
set timefmt "%m/%d/%y"
set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"
set timefmt "%m/%d/%y %H:%M"
plot "data" using 1:3
```

which will produce xtic labels that look like "03/21".

See the descriptions of each command for more details.

Part II

Commands

This section lists the commands acceptable to **gnuplot** in alphabetical order. Printed versions of this document contain all commands; on-line versions may not be complete. Indeed, on some systems there may be no commands at all listed under this heading.

Note that in most cases unambiguous abbreviations for command names and their options are permissible, i.e., "p f(x) w li" instead of "plot f(x) with lines".

In the syntax descriptions, braces ({}) denote optional arguments and a vertical bar (|) separates mutually exclusive choices.

22 Cd

The **cd** command changes the working directory.

Syntax:

```
cd '<directory-name>'
```

The directory name must be enclosed in quotes.

Examples:

```
cd 'subdir'
cd ".."
```

DOS users must use single-quotes — backslash [\] has special significance inside double-quotes. For example,

```
cd "c:\newdata"
fails, but
    cd 'c:\newdata'
```

works as expected.

23 Call

The **call** command is identical to the load command with one exception: you can have up to ten additional parameters to the command (delimited according to the standard parser rules) which can be substituted into the lines read from the file. As each line is read from the **call**ed input file, it is scanned for the sequence \$ (dollar-sign) followed by a digit (0-9). If found, the sequence is replaced by the corresponding parameter from the **call** command line. If the parameter was specified as a string in the **call** line, it is substituted without its enclosing quotes. Sequence \$# is replaced by the number of passed parameters. \$ followed by any character will be that character; e.g. use \$\$ to get a single \$. Providing more than ten parameters on the **call** command line will cause an error. A parameter that was not provided substitutes as nothing. Files being **call**ed may themselves contain **call** or **load** commands.

The **call** command *must* be the last command on a multi-command line.

Syntax:

```
call "<input-file>" <parm-ter-0> <parm-1> ... <parm-9>
```

The name of the input file must be enclosed in quotes, and it is recommended that parameters are similarly enclosed in quotes (future versions of gnuplot may treat quoted and unquoted arguments differently).

Example:

If the file 'calltest.gp' contains the line:

```
print "argc=$# p0=$0 p1=$1 p2=$2 p3=$3 p4=$4 p5=$5 p6=$6 p7=x$7x"
entering the command:
    call 'calltest.gp' "abcd" 1.2 + "'quoted'" -- "$2"
will display:
    argc=7 p0=abcd p1=1.2 p2=+ p3='quoted' p4=- p5=- p6=$2 p7=xx
```

NOTE: there is a clash in syntax with the datafile **using** callback operator. Use **\$\$n** or **column(n)** to access column n from a datafile inside a **call**ed datafile plot.

24 Clear

The **clear** command erases the current screen or output device as specified by **set output**. This usually generates a formfeed on hardcopy devices. Use **set terminal** to set the device type.

For some terminals **clear** erases only the portion of the plotting surface defined by **set size**, so for these it can be used in conjunction with **set multiplot** to create an inset.

Example:

```
set multiplot
plot sin(x)
set origin 0.5,0.5
set size 0.4,0.4
clear
plot cos(x)
unset multiplot
```

Please see set multiplot (p. 91), set size (p. 104), and set origin (p. 93) for details of these commands.

25 Exit

The commands **exit** and **quit** and the END-OF-FILE character will exit the current **gnuplot** command file and **load** the next one. See "help batch/interactive" for more details.

Each of these commands will clear the output device (as does the **clear** command) before exiting.

26 Fit.

The **fit** command can fit a user-defined function to a set of data points (x,y) or (x,y,z), using an implementation of the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm. Any user-defined variable occurring in the function body may serve as a fit parameter, but the return type of the function must be real.

Syntax:

Ranges may be specified to temporarily limit the data which is to be fitted; any out-of-range data points are ignored. The syntax is

```
[{dummy_variable=}{<min>}{:<max>}],
```

analogous to plot; see plot ranges (p. 58).

<function> is any valid **gnuplot** expression, although it is usual to use a previously user-defined function of the form f(x) or f(x,y).

<datafile> is treated as in the plot command. All the plot datafile modifiers (using, every,...) except smooth and the deprecated thru are applicable to fit. See plot datafile (p. 45).

The default data formats for fitting functions with a single independent variable, y=f(x), are $\{x:\}y$ or x:y:s; those formats can be changed with the datafile **using** qualifier. The third item (a column number or an expression), if present, is interpreted as the standard deviation of the corresponding y value and is used to compute a weight for the datum, 1/s**2. Otherwise, all data points are weighted equally, with a weight of one. Note that if you don't specify a **using** option at all, no y deviations are read from the datafile even if it does have a third column, so you'll always get unit weights.

To fit a function with two independent variables, z=f(x,y), the required format is **using** with four items, x:y:z:s. The complete format must be given — no default columns are assumed for a missing token. Weights for each data point are evaluated from 's' as above. If error estimates are not available, a constant value can be specified as a constant expression (see **plot datafile using (p. 54)**), e.g., **using 1:2:3:(1)**.

Multiple datasets may be simultaneously fit with functions of one independent variable by making y a 'pseudo-variable', e.g., the dataline number, and fitting as two independent variables. See **fit multi-branch** (p. 41).

The **via** qualifier specifies which parameters are to be adjusted, either directly, or by referencing a parameter file.

Examples:

```
f(x) = a*x**2 + b*x + c
g(x,y) = a*x**2 + b*y**2 + c*x*y
FIT\_LIMIT = 1e-6
fit f(x) 'measured.dat' via 'start.par'
fit f(x) 'measured.dat' using 3:($7-5) via 'start.par'
fit f(x) './data/trash.dat' using 1:2:3 via a, b, c
fit g(x,y) 'surface.dat' using 1:2:3:(1) via a, b, c
```

After each iteration step, detailed information about the current state of the fit is written to the display. The same information about the initial and final states is written to a log file, "fit.log". This file is always appended to, so as to not lose any previous fit history; it should be deleted or renamed as desired. By using the command **set fit logfile**, the name of the log file can be changed.

If gnuplot was built with this option, and you activated it using **set fit errorvariables**, the error for each fitted parameter will be stored in a variable named like the parameter, but with "_err" appended. Thus the errors can be used as input for further computations.

The fit may be interrupted by pressing Ctrl-C (any key but Ctrl-C under MSDOS and Atari Multitasking Systems). After the current iteration completes, you have the option to (1) stop the fit and accept the current parameter values, (2) continue the fit, (3) execute a **gnuplot** command as specified by the environment variable FIT_SCRIPT. The default for FIT_SCRIPT is **replot**, so if you had previously plotted both the data and the fitting function in one graph, you can display the current state of the fit.

Once fit has finished, the **update** command may be used to store final values in a file for subsequent use as a parameter file. See **update** (p. 133) for details.

26.1 Adjustable parameters

There are two ways that **via** can specify the parameters to be adjusted, either directly on the command line or indirectly, by referencing a parameter file. The two use different means to set initial values.

Adjustable parameters can be specified by a comma-separated list of variable names after the **via** keyword. Any variable that is not already defined is created with an initial value of 1.0. However, the fit is more likely to converge rapidly if the variables have been previously declared with more appropriate starting values.

In a parameter file, each parameter to be varied and a corresponding initial value are specified, one per

line, in the form

varname = value

Comments, marked by '#', and blank lines are permissible. The special form

```
varname = value # FIXED
```

means that the variable is treated as a 'fixed parameter', initialized by the parameter file, but not adjusted by **fit**. For clarity, it may be useful to designate variables as fixed parameters so that their values are reported by **fit**. The keyword **# FIXED** has to appear in exactly this form.

26.2 Short introduction

fit is used to find a set of parameters that 'best' fits your data to your user-defined function. The fit is judged on the basis of the sum of the squared differences or 'residuals' (SSR) between the input data points and the function values, evaluated at the same places. This quantity is often called 'chisquare' (i.e., the Greek letter chi, to the power of 2). The algorithm attempts to minimize SSR, or more precisely, WSSR, as the residuals are 'weighted' by the input data errors (or 1.0) before being squared; see fit error_estimates (p. 39) for details.

That's why it is called 'least-squares fitting'. Let's look at an example to see what is meant by 'non-linear', but first we had better go over some terms. Here it is convenient to use z as the dependent variable for user-defined functions of either one independent variable, z=f(x), or two independent variables, z=f(x,y). A parameter is a user-defined variable that **fit** will adjust, i.e., an unknown quantity in the function declaration. Linearity/non-linearity refers to the relationship of the dependent variable, z, to the parameters which **fit** is adjusting, not of z to the independent variables, x and/or y. (To be technical, the second {and higher} derivatives of the fitting function with respect to the parameters are zero for a linear least-squares problem).

For linear least-squares (LLS), the user-defined function will be a sum of simple functions, not involving any parameters, each multiplied by one parameter. NLLS handles more complicated functions in which parameters can be used in a large number of ways. An example that illustrates the difference between linear and nonlinear least-squares is the Fourier series. One member may be written as

```
z=a*sin(c*x) + b*cos(c*x).
```

If a and b are the unknown parameters and c is constant, then estimating values of the parameters is a linear least-squares problem. However, if c is an unknown parameter, the problem is nonlinear.

In the linear case, parameter values can be determined by comparatively simple linear algebra, in one direct step. However LLS is a special case which is also solved along with more general NLLS problems by the iterative procedure that **gnuplot** uses. **fit** attempts to find the minimum by doing a search. Each step (iteration) calculates WSSR with a new set of parameter values. The Marquardt-Levenberg algorithm selects the parameter values for the next iteration. The process continues until a preset criterion is met, either (1) the fit has "converged" (the relative change in WSSR is less than FIT_LIMIT), or (2) it reaches a preset iteration count limit, FIT_MAXITER (see **fit control variables (p. 40)**). The fit may also be interrupted and subsequently halted from the keyboard (see **fit (p. 36)**).

Often the function to be fitted will be based on a model (or theory) that attempts to describe or predict the behaviour of the data. Then **fit** can be used to find values for the free parameters of the model, to determine how well the data fits the model, and to estimate an error range for each parameter. See **fit error_estimates** (**p. 39**).

Alternatively, in curve-fitting, functions are selected independent of a model (on the basis of experience as to which are likely to describe the trend of the data with the desired resolution and a minimum number of parameters*functions.) The **fit** solution then provides an analytic representation of the curve.

However, if all you really want is a smooth curve through your data points, the **smooth** option to **plot** may be what you've been looking for rather than **fit**.

26.3 Error estimates

In **fit**, the term "error" is used in two different contexts, data error estimates and parameter error estimates.

Data error estimates are used to calculate the relative weight of each data point when determining the weighted sum of squared residuals, WSSR or chisquare. They can affect the parameter estimates, since they determine how much influence the deviation of each data point from the fitted function has on the final values. Some of the **fit** output information, including the parameter error estimates, is more meaningful if accurate data error estimates have been provided.

The 'statistical overview' describes some of the **fit** output and gives some background for the 'practical guidelines'.

26.3.1 Statistical overview

The theory of non-linear least-squares (NLLS) is generally described in terms of a normal distribution of errors, that is, the input data is assumed to be a sample from a population having a given mean and a Gaussian (normal) distribution about the mean with a given standard deviation. For a sample of sufficiently large size, and knowing the population standard deviation, one can use the statistics of the chisquare distribution to describe a "goodness of fit" by looking at the variable often called "chisquare". Here, it is sufficient to say that a reduced chisquare (chisquare/degrees of freedom, where degrees of freedom is the number of datapoints less the number of parameters being fitted) of 1.0 is an indication that the weighted sum of squared deviations between the fitted function and the data points is the same as that expected for a random sample from a population characterized by the function with the current value of the parameters and the given standard deviations.

If the standard deviation for the population is not constant, as in counting statistics where variance = counts, then each point should be individually weighted when comparing the observed sum of deviations and the expected sum of deviations.

At the conclusion fit reports 'stdfit', the standard deviation of the fit, which is the rms of the residuals, and the variance of the residuals, also called 'reduced chisquare' when the data points are weighted. The number of degrees of freedom (the number of data points minus the number of fitted parameters) is used in these estimates because the parameters used in calculating the residuals of the datapoints were obtained from the same data.

To estimate confidence levels for the parameters, one can use the minimum chisquare obtained from the fit and chisquare statistics to determine the value of chisquare corresponding to the desired confidence level, but considerably more calculation is required to determine the combinations of parameters which produce such values.

Rather than determine confidence intervals, **fit** reports parameter error estimates which are readily obtained from the variance-covariance matrix after the final iteration. By convention, these estimates are called "standard errors" or "asymptotic standard errors", since they are calculated in the same way as the standard errors (standard deviation of each parameter) of a linear least-squares problem, even though the statistical conditions for designating the quantity calculated to be a standard deviation are not generally valid for the NLLS problem. The asymptotic standard errors are generally over-optimistic and should not be used for determining confidence levels, but are useful for qualitative purposes.

The final solution also produces a correlation matrix, which gives an indication of the correlation of parameters in the region of the solution; if one parameter is changed, increasing chisquare, does changing another compensate? The main diagonal elements, autocorrelation, are all 1; if all parameters were independent, all other elements would be nearly 0. Two variables which completely compensate each other would have an off-diagonal element of unit magnitude, with a sign depending on whether the relation is proportional or inversely proportional. The smaller the magnitudes of the off-diagonal elements, the closer the estimates of the standard deviation of each parameter would be to the asymptotic standard error.

26.3.2 Practical guidelines

If you have a basis for assigning weights to each data point, doing so lets you make use of additional knowledge about your measurements, e.g., take into account that some points may be more reliable than others. That may affect the final values of the parameters.

Weighting the data provides a basis for interpreting the additional **fit** output after the last iteration. Even if you weight each point equally, estimating an average standard deviation rather than using a weight of 1 makes WSSR a dimensionless variable, as chisquare is by definition.

Each fit iteration will display information which can be used to evaluate the progress of the fit. (An '*' indicates that it did not find a smaller WSSR and is trying again.) The 'sum of squares of residuals', also called 'chisquare', is the WSSR between the data and your fitted function; fit has minimized that. At this stage, with weighted data, chisquare is expected to approach the number of degrees of freedom (data points minus parameters). The WSSR can be used to calculate the reduced chisquare (WSSR/ndf) or stdfit, the standard deviation of the fit, sqrt(WSSR/ndf). Both of these are reported for the final WSSR.

If the data are unweighted, stdfit is the rms value of the deviation of the data from the fitted function, in user units.

If you supplied valid data errors, the number of data points is large enough, and the model is correct, the reduced chisquare should be about unity. (For details, look up the 'chi-squared distribution' in your favourite statistics reference.) If so, there are additional tests, beyond the scope of this overview, for determining how well the model fits the data.

A reduced chisquare much larger than 1.0 may be due to incorrect data error estimates, data errors not normally distributed, systematic measurement errors, 'outliers', or an incorrect model function. A plot of the residuals, e.g., **plot 'datafile' using 1:(\$2-f(\$1))**, may help to show any systematic trends. Plotting both the data points and the function may help to suggest another model.

Similarly, a reduced chisquare less than 1.0 indicates WSSR is less than that expected for a random sample from the function with normally distributed errors. The data error estimates may be too large, the statistical assumptions may not be justified, or the model function may be too general, fitting fluctuations in a particular sample in addition to the underlying trends. In the latter case, a simpler function may be more appropriate.

You'll have to get used to both **fit** and the kind of problems you apply it to before you can relate the standard errors to some more practical estimates of parameter uncertainties or evaluate the significance of the correlation matrix.

Note that \mathbf{fit} , in common with most NLLS implementations, minimizes the weighted sum of squared distances $(y-f(x))^{**}2$. It does not provide any means to account for "errors" in the values of x, only in y. Also, any "outliers" (data points outside the normal distribution of the model) will have an exaggerated effect on the solution.

26.4 Fit controlling

There are a number of **gnuplot** variables that can be defined to affect **fit**. Those which can be defined once **gnuplot** is running are listed under 'control_variables' while those defined before starting **gnuplot** are listed under 'environment_variables'.

26.4.1 Control variables

The default epsilon limit (1e-5) may be changed by declaring a value for

FIT_LIMIT

When the sum of squared residuals changes between two iteration steps by a factor less than this number (epsilon), the fit is considered to have 'converged'.

The maximum number of iterations may be limited by declaring a value for

FIT_MAXITER

A value of 0 (or not defining it at all) means that there is no limit.

If you need even more control about the algorithm, and know the Marquardt-Levenberg algorithm well, there are some more variables to influence it. The startup value of **lambda** is normally calculated automatically from the ML-matrix, but if you want to, you may provide your own one with

```
FIT_START_LAMBDA
```

Specifying FIT_START_LAMBDA as zero or less will re-enable the automatic selection. The variable FIT_LAMBDA_FACTOR

gives the factor by which **lambda** is increased or decreased whenever the chi-squared target function increased or decreased significantly. Setting FIT_LAMBDA_FACTOR to zero re-enables the default factor of 10.0.

Other variables with the FIT₋ prefix may be added to **fit**, so it is safer not to use that prefix for user-defined variables.

The variables FIT_SKIP and FIT_INDEX were used by earlier releases of **gnuplot** with a 'fit' patch called **gnufit** and are no longer available. The datafile **every** modifier provides the functionality of FIT_SKIP. FIT_INDEX was used for multi-branch fitting, but multi-branch fitting of one independent variable is now done as a pseudo-3D fit in which the second independent variable and **using** are used to specify the branch. See **fit multi-branch** (p. 41).

26.4.2 Environment variables

The environment variables must be defined before **gnuplot** is executed; how to do so depends on your operating system.

```
FIT_LOG
```

changes the name (and/or path) of the file to which the fit log will be written from the default of "fit.log" in the working directory. The default value can be overwritten using the command **set fitlogfile**.

```
FIT_SCRIPT
```

specifies a command that may be executed after an user interrupt. The default is **replot**, but a **plot** or **load** command may be useful to display a plot customized to highlight the progress of the fit.

26.5 Multi-branch

In multi-branch fitting, multiple data sets can be simultaneously fit with functions of one independent variable having common parameters by minimizing the total WSSR. The function and parameters (branch) for each data set are selected by using a 'pseudo-variable', e.g., either the dataline number (a 'column' index of -1) or the datafile index (-2), as the second independent variable.

Example: Given two exponential decays of the form, z=f(x), each describing a different data set but having a common decay time, estimate the values of the parameters. If the datafile has the format x:z:s, then

```
f(x,y) = (y==0) ? a*exp(-x/tau) : b*exp(-x/tau) fit f(x,y) 'datafile' using 1:-1:2:3 via a, b, tau
```

For a more complicated example, see the file "hexa.fnc" used by the "fit.dem" demo.

Appropriate weighting may be required since unit weights may cause one branch to predominate if there is a difference in the scale of the dependent variable. Fitting each branch separately, using the multi-branch solution as initial values, may give an indication as to the relative effect of each branch on the joint solution.

26.6 Starting values

Nonlinear fitting is not guaranteed to converge to the global optimum (the solution with the smallest sum of squared residuals, SSR), and can get stuck at a local minimum. The routine has no way to determine that; it is up to you to judge whether this has happened.

fit may, and often will get "lost" if started far from a solution, where SSR is large and changing slowly as the parameters are varied, or it may reach a numerically unstable region (e.g., too large a number causing a floating point overflow) which results in an "undefined value" message or **gnuplot** halting.

To improve the chances of finding the global optimum, you should set the starting values at least roughly in the vicinity of the solution, e.g., within an order of magnitude, if possible. The closer your starting values are to the solution, the less chance of stopping at another minimum. One way to find starting values is to plot data and the fitting function on the same graph and change parameter values and **replot** until reasonable similarity is reached. The same plot is also useful to check whether the fit stopped at a minimum with a poor fit.

Of course, a reasonably good fit is not proof there is not a "better" fit (in either a statistical sense, characterized by an improved goodness-of-fit criterion, or a physical sense, with a solution more consistent with the model.) Depending on the problem, it may be desirable to **fit** with various sets of starting values, covering a reasonable range for each parameter.

26.7 Tips

Here are some tips to keep in mind to get the most out of fit. They're not very organized, so you'll have to read them several times until their essence has sunk in.

The two forms of the **via** argument to **fit** serve two largely distinct purposes. The **via** "**file**" form is best used for (possibly unattended) batch operation, where you just supply the startup values in a file and can later use **update** to copy the results back into another (or the same) parameter file.

The **via var1, var2, ...** form is best used interactively, where the command history mechanism may be used to edit the list of parameters to be fitted or to supply new startup values for the next try. This is particularly useful for hard problems, where a direct fit to all parameters at once won't work without good starting values. To find such, you can iterate several times, fitting only some of the parameters, until the values are close enough to the goal that the final fit to all parameters at once will work.

Make sure that there is no mutual dependency among parameters of the function you are fitting. For example, don't try to fit a*exp(x+b), because a*exp(x+b)=a*exp(b)*exp(x). Instead, fit either a*exp(x) or exp(x+b).

A technical issue: the parameters must not be too different in magnitude. The larger the ratio of the largest and the smallest absolute parameter values, the slower the fit will converge. If the ratio is close to or above the inverse of the machine floating point precision, it may take next to forever to converge, or refuse to converge at all. You will have to adapt your function to avoid this, e.g., replace 'parameter' by '1e9*parameter' in the function definition, and divide the starting value by 1e9.

If you can write your function as a linear combination of simple functions weighted by the parameters to be fitted, by all means do so. That helps a lot, because the problem is no longer nonlinear and should converge with only a small number of iterations, perhaps just one.

Some prescriptions for analysing data, given in practical experimentation courses, may have you first fit some functions to your data, perhaps in a multi-step process of accounting for several aspects of the underlying theory one by one, and then extract the information you really wanted from the fitting parameters of those functions. With **fit**, this may often be done in one step by writing the model function directly in terms of the desired parameters. Transforming data can also quite often be avoided, though sometimes at the cost of a more difficult fit problem. If you think this contradicts the previous paragraph about simplifying the fit function, you are correct.

A "singular matrix" message indicates that this implementation of the Marquardt-Levenberg algorithm can't calculate parameter values for the next iteration. Try different starting values, writing the function in another form, or a simpler function.

Finally, a nice quote from the manual of another fitting package (fudgit), that kind of summarizes all

these issues: "Nonlinear fitting is an art!"

27 Help

The help command displays on-line help. To specify information on a particular topic use the syntax:

```
help {<topic>}
```

If <topic> is not specified, a short message is printed about **gnuplot**. After help for the requested topic is given, a menu of subtopics is given; help for a subtopic may be requested by typing its name, extending the help request. After that subtopic has been printed, the request may be extended again or you may go back one level to the previous topic. Eventually, the **gnuplot** command line will return.

If a question mark (?) is given as the topic, the list of topics currently available is printed on the screen.

28 History

history command lists or saves previous entries in the history of the command line editing, or executes an entry.

Here you find 'usage by examples':

```
history
                      # show the complete history
                      # show last 5 entries in the history
history 5
history quiet 5
                      # show last 5 entries without entry numbers
history "hist.gp"
                      # write the complete history to file hist.gp
history "hist.gp" append # append the complete history to file hist.gp
history 10 "hist.gp" # write last 10 commands to file hist.gp
history 10 "|head -5 >>diary.gp" # write 5 history commands using pipe
history ?load
                      # show all history entries starting with "load"
history ?"set c"
                      # like above, several words enclosed in quotes
                      # execute last entry starting with "reread"
hi !reread
hist !"set xr"
                      # like above, several words enclosed in quotes
hi !hi
                      # guess vourself :-))
```

On systems which support a popen function (Unix), the output of history can be piped through an external program by starting the file name with a '|', as one of the above examples demonstrates.

29 If

The **if** command allows commands to be executed conditionally.

Syntax:

```
if (<condition>) <command-line> [; else if (<condition>) ...; else ...]
```

<condition> will be evaluated. If it is true (non-zero), then the command(s) of the <command-line> will be executed. If <condition> is false (zero), then the entire <command-line> is ignored until the next occurrence of else. Note that use of; to allow multiple commands on the same line will not end the conditionalized commands.

Examples:

but

```
if (1==2) print "Never see this"; print "Or this either"
```

will not display anything.

else:

```
v=0
 v=v+1; if (v%2) print "2"; else if (v%3) print "3"; else print "fred"
```

(repeat the last line repeatedly!)

See **reread** (p. 62) for an example of how if (p. 43) and **reread** (p. 62) can be used together to perform a loop.

30 Load

The **load** command executes each line of the specified input file as if it had been typed in interactively. Files created by the **save** command can later be **load**ed. Any text file containing valid commands can be created and then executed by the **load** command. Files being **load**ed may themselves contain **load** or **call** commands. See **comments** (**p. 20**) for information about comments in commands. To **load** with arguments, see **call** (**p. 35**).

The **load** command must be the last command on a multi-command line.

Syntax:

```
load "<input-file>"
```

The name of the input file must be enclosed in quotes.

The special filename "-" may be used to **load** commands from standard input. This allows a **gnuplot** command file to accept some commands from standard input. Please see "help batch/interactive" for more details.

On some systems which support a popen function (Unix), the load file can be read from a pipe by starting the file name with a '<'.

Examples:

```
load 'work.gnu'
load "func.dat"
load "< loadfile_generator.sh"</pre>
```

The **load** command is performed implicitly on any file names given as arguments to **gnuplot**. These are loaded in the order specified, and then **gnuplot** exits.

31 Pause

The **pause** command displays any text associated with the command and then waits a specified amount of time or until the carriage return is pressed. **pause** is especially useful in conjunction with **load** files.

Syntax:

```
pause <time> {"<string>"}
pause mouse {keypress} {"<string>"}
```

<time> may be any constant or expression. Choosing -1 will wait until a carriage return is hit, zero (0) won't pause at all, and a positive number will wait the specified number of seconds. The time is rounded to an integer number of seconds if subsecond time resolution is not supported by the given platform. pause 0 is synonymous with print.

If the current terminal supports mousing, then **pause mouse** will terminate on either a mouse click or on ctrl-C. For all other terminals, or if mousing is not active, **pause mouse** is equivalent to **pause -1**.

The variant command **pause mouse keypress** will terminate on either a mouse click or on a keypress in the plot window. In all cases the coordinates of the mouse are returned in variables MOUSE_X, MOUSE_Y, MOUSE_X2, MOUSE_Y2. The button number or the ascii value of the key pressed is returned in MOUSE_KEY. See **mouse variables** (p. 30).

Note: Since **pause** communicates with the operating system rather than the graphics, it may behave differently with different device drivers (depending upon how text and graphics are mixed).

Examples:

```
pause -1  # Wait until a carriage return is hit
pause 3  # Wait three seconds
pause -1 "Hit return to continue"
pause 10 "Isn't this pretty? It's a cubic spline."
pause mouse "Click mouse on selected data point"
```

32 Plot

plot is the primary command for drawing plots with **gnuplot**. It creates plots of functions and data in many, many ways. **plot** is used to draw 2-d functions and data; **splot** draws 2-d projections of 3-d surfaces and data. **plot** and **splot** contain many common features; see **splot** (**p. 129**) for differences. Note specifically that although the **binary** <**binary** list> variation does work for both **plot** and **splot**, there are small differences between these modes. Furthermore, **plot**'s **axes** option does not exist for **splot**.

Syntax:

```
plot {<ranges>}
    {<function> | {"<datafile>" {datafile-modifiers}}}
    {axes <axes>} {<title-spec>} {with <style>}
    {, {definitions,} <function> ...}
```

where either a <function> or the name of a data file enclosed in quotes is supplied. A function is a mathematical expression or a pair of mathematical expressions in parametric mode. The expressions may be defined completely or in part earlier in the stream of **gnuplot** commands (see **user-defined** (p. 26)).

It is also possible to define functions and parameters on the **plot** command itself. This is done merely by isolating them from other items with commas.

There are four possible sets of axes available; the keyword $\langle axes \rangle$ is used to select the axes for which a particular line should be scaled. $\mathbf{x1y1}$ refers to the axes on the bottom and left; $\mathbf{x2y2}$ to those on the top and right; $\mathbf{x1y2}$ to those on the bottom and right; and $\mathbf{x2y1}$ to those on the top and left. Ranges specified on the **plot** command apply only to the first set of axes (bottom left).

Examples:

```
plot sin(x)

plot f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)

plot [t=1:10] [-pi:pi*2] tan(t), \

"data.1" using (tan(\$2)):(\$3/\$4) smooth csplines \

axes x1y2 notitle with lines 5
```

See also show plot (p. 94).

32.1 Data

Discrete data contained in a file can be displayed by specifying the name of the data file (enclosed in single or double quotes) on the **plot** command line.

Syntax:

```
plot '<file_name>' {binary <binary list>}
```

```
{matrix}
{index <index list>}
{every <every list>}
{thru <thru expression>}
{using <using list>}
{smooth <option>}
```

The modifiers **binary**, **index**, **every**, **thru**, **using**, and **smooth** are discussed separately. In brief, **binary** allows data entry from a binary file (default is ASCII), **index** selects which data sets in a multidata-set file are to be plotted, **every** specifies which points within a single data set are to be plotted, **using** determines how the columns within a single record are to be interpreted (**thru** is a special case of **using**), and **smooth** allows for simple interpolation and approximation. (**splot** has a similar syntax, but does not support the **smooth** and **thru** options.)

ASCII DATA FILES:

Data files should contain at least one data point per record (**using** can select one data point from the record). Records beginning with # (and also with ! on VMS) will be treated as comments and ignored. Each data point represents an (x,y) pair. For **plots** with error bars or error bars with lines (see **set style errorbars** (**p. 115**) or **set style errorlines** (**p. 115**)), each data point is (x,y,y)delta), (x,y,y)dow,yhigh), (x,y,x)delta), (x,y,x)dow,xhigh), or (x,y,x)dow,xhigh,ylow,yhigh).

In all cases, the numbers of each record of a data file must be separated by white space (one or more blanks or tabs) unless a format specifier is provided by the **using** option. This white space divides each record into columns. However, whitespace inside a pair of double quotes is ignored when counting columns, so the following datafile line has three columns:

```
1.0 "second column" 3.0
```

Data may be written in exponential format with the exponent preceded by the letter e, E, d, D, q, or Q. Only one column (the y value) need be provided. If x is omitted, **gnuplot** provides integer values starting at 0.

In datafiles, blank records (records with no characters other than blanks and a newline and/or carriage return) are significant — pairs of blank records separate **index**es (see **plot datafile index** (**p. 51**)). Data separated by double blank records are treated as if they were in separate data files.

Single blank records designate discontinuities in a **plot**; no line will join points separated by a blank records (if they are plotted with a line style).

If autoscaling has been enabled (**set autoscale**), the axes are automatically extended to include all datapoints, with a whole number of tic marks if tics are being drawn. This has two consequences: i) For **splot**, the corner of the surface may not coincide with the corner of the base. In this case, no vertical line is drawn. ii) When plotting data with the same x range on a dual-axis graph, the x coordinates may not coincide if the x2tics are not being drawn. This is because the x axis has been autoextended to a whole number of tics, but the x2 axis has not. The following example illustrates the problem:

```
reset; plot '-', '-' axes x2y1
1 1
19 19
e
1 1
19 19
```

To avoid this, you can use the **fixmin/fixmax** feature of the **set autoscale** command, which turns off the automatic extension of the axis range upto the next tic mark.

BINARY DATA FILES:

Gnuplot can read binary data files. However, adequate information about details of the file format must be given on the command line or extracted from the file itself for a supported binary **filetype**. In particular, there are two structures for binary files, a matrix binary format and a general binary format.

The matrix binary format contains a two dimensional array of 32 bit IEEE float values with an additional column and row of coordinate values. As with ASCII matrix, in the using list, repetition of the coordinate row constitutes column 1, repetition of the coordinate column constitutes column 2, and the array of values constitutes column 3.

The general binary format contains an arbitrary number of columns fow which information must be specified at the command line. For example, **array**, **record**, **format** and **using** can indicate the size, format and dimension of data. There are a variety of useful commands for skipping file headers, changing endianess. There are a set of commands for positioning and translating data since often coordinates are not part of the file when uniform sampling is inherent in the data. Different from matrix binary or ASCII, general binary does not treat the generated columns as 1, 2 or 3 in the using list. Rather, column 1 begins with column 1 of the file, or as specified in the **format** list.

There are global default settings for the various binary options which may be set using the same syntax as the options when used as part of the (s)plot <filename> binary ... command. This syntax is set datafile binary The general rule is that common command-line specified parameters override file-extracted parameters which override default parameters.

Matrix binary is the default binary format when no keywords specific to general binary are given, i.e., array, record, format, filetype.

General binary data can be entered at the command line via the special file name '-'. However, this is intended for use through a pipe where programs can exchange binary data, not for keyboards. There is no "end of record" character for binary data. Gnuplot continues reading from a pipe until it has read the number of points declared in the **array** qualifier.

See datafile binary (p. 47) for more details.

32.1.1 Binary

The binary keyword allows a data file to be binary as opposed to ASCII. There are two formats for binary–matrix binary and general binary. Matrix binary is a fixed format in which data appears in a 2D array with an extra row and column for coordinate values. General binary is a flexible format for which details about the file must be given at the command line.

See binary matrix (p. 130) or binary general (p. 47) for more details.

32.1.2 Binary general

General binary data in which format information is not necessarily part of the file can be read by giving further details about the file format at the command line. Although the syntax is slightly arcane to the casual user, general binary is particularly useful for application programs using gnuplot and sending large amounts of data.

Syntax:

```
plot '<file_name>' {binary <binary list>} ...
splot '<file_name>' {binary <binary list>} ...
```

General binary format is activated by keywords in

binary list> pertaining to information about file structure, i.e., array, record, format or filetype. Otherwise, matrix binary format is assumed. (See binary matrix (p. 130) for more details.)

There are some standard file types that may be read for which details about the binary format may be extracted automatically. (Type **show datafile binary** at the command line for a list.) Otherwise, details must be specified at the command line or set in the defaults. Keywords are described below.

The keyword **filetype** in
 sinary list> controls the routine used to read the file, i.e., the format of the data. For a list of the supported file types, type **show datafile binary filetypes**. If no file type is given, the rule is that "traditional" gnuplot binary is assumed for **splot** if the **binary** keyword stands alone. In all other circumstances, for **plot** or when one of the
 binary list> keywords appears, a raw binary file is assumed whereby the keywords specify the binary format.

General binary data files fall into two basic classes, and some files may be of both classes depending upon how they are treated. There is that class for which uniform sampling is assumed and point coordinates must be generated. This is the class for which full control via the

binary list> keywords applies. For this class, the settings precedence is that command line parameters override in-file parameters, which override default settings. The other class is that set of files for which coordinate information is contained within the file or there is possibly a non-uniform sampling such as gnuplot binary.

Other than for the unique data files such as gnuplot binary, one should think of binary data as conceptually the same as ASCII data. Each point has columns of information which are selected via the **<using** list> associated with using. When no format string is specified, gnuplot will retrieve a number of binary variables equal to the largest column given in the **(using list)**. For example, **using 1:3** will result in three columns being read, of which the second will be ignored. There are default using lists based upon the typical number of parameters associated with a certain plot type. For example, with image has a default of using 1, while with rgbimage has a default of using 1:2:3. Note that the special characters for using representing point/line/index generally should not be used for binary data. There are keywords in

sinary list> that control this.

32.1.2.1 Array Describes the sampling array dimensions associated with the binary file. The coordinates will be generated by gnuplot. A number must be specified for each dimension, thereby calling out the size of the array. For example, array=10x20 means the underlying sampling structure is twodimensional with 10 points along the first (x) dimension and 20 points along the second (y) dimension. A special "number", Inf, can be used to indicate that data should be read until the end of file. A comma can be used to separate the dimensions for multiple records. For example, array=25.35 indicates there are two one-dimensional records within the file. The comma behavior applies to the remaining keywords in this list for which it makes sense to be associated with individual records.

Currently, syntax allows for up to three-dimensional arrays. However, no conventions have yet been made for handling three-dimensional coordinates.

- **32.1.2.2** Record This keyword serves the same function as array, having the same syntax. However, record causes gnuplot to not generate coordinate information. This is for the case where such information may be included in one of the columns of the binary data file.
- **32.1.2.3** Format The default binary format is a float. For more flexibility, the format can include details about variable sizes. For example, format="%uchar%int%float" associates an unsigned character with the first using column, an int with the second column and a float with the third column. If the number of size specifications is less than the greatest column number, the size is implicitly taken to be similar to the last given variable size.

Furthermore, the format specification can include "discarded" terms via the * character. For example, to skip the middle column of the previous example, one could write format="%uchar%*int%float" and gnuplot will discard the middle integer. To list variable sizes, type show datafile binary datasizes. There are a group of names that are machine dependent along with their sizes in bytes for the particular compilation. There is also a group of names which attempt to be machine independent.

32.1.2.4 Endian Often the endianess of binary data in the file does not agree with the endianess used by the platform on which gnuplot is running. Several words can direct gnuplot how to arrange bytes. For example endian=little means treat the binary file as having byte significance from least to greatest. The options are

least significant to greatest significance greatest significance to least significance default: assume file endianess is the same as compiler swap (swab): Interchange the significance. (If things

don't look right, try this.)

32.1.2.5 Filetype For some standard binary file formats gnuplot can extract all the necessary information from the file in question. As an example, "format=edf" will read ESRF Header File format files. For a list of the currently supported file formats, type **show datafile binary filetypes**.

There is a special file type called **auto** for which gnuplot will check if the binary file's extension is a quasi-standard extension for a supported format.

Command line keywords may be used to override settings extracted from the file. The settings from the file override any defaults. (See set datafile binary (p. 75) for details.)

32.1.2.6 Edf edf is one of the automatically recognized binary file types for images. EDF stands for ESRF Data Format, and it supports both edf and ehf formats (the latter means ESRF Header Format). More information on specifications can be found at

http://www.esrf.fr/computing/expg/subgroups/general/format/Format.html

See also binary (p. 47).

- **32.1.2.7 Keywords** The following keywords apply only when generating coordinates. That is, when the keyword **array** is used.
- **32.1.2.8** Scan A great deal of confusion can arise concerning the relationship between how gnuplot scans a binary file and the dimensions seen on the plot. To lessen the confusion, conceptually think of gnuplot always scanning the binary file point/line/plane or fast/medium/slow. Then this keyword is used to tell gnuplot how to map this scanning convention to the Cartesian convention shown in plots, i.e., x/y/z. The qualifier for scan is a two or three letter code representing where point is assigned (first letter), line is assigned (second letter), and plane is assigned (third letter). For example, scan=yx means the fastest, point-by-point, increment should be mapped along the Cartesian y dimension and the middle, line-by-line, increment should be mapped along the x dimension.

When the plotting mode is **plot**, the qualifier code can include the two letters x and y. For **splot**, it can include the three letters x, y and z.

There is nothing restricting the inherent mapping from point/line/plane to apply only to Cartesian coordinates. For this reason there are cylindrical coordinate synonyms for the qualifier codes where t (theta), r and z are analogous to the x, y and z of Cartesian coordinates.

- 32.1.2.9 Transpose Shorthand notation for scan=yx or scan=yxz.
- **32.1.2.10 Dx**, **dy**, **dz** When gnuplot generates coordinates, it uses the spacing described by these keywords. For example $\mathbf{dx}=\mathbf{10}$ $\mathbf{dy}=\mathbf{20}$ would mean space samples along the x dimension by 10 and space samples along the y dimension by 20. **dy** cannot appear if **dx** does not appear. Similarly, **dz** cannot appear if **dy** does not appear. If the underlying dimensions are greater than the keywords specified, the spacing of the highest dimension given is extended to the other dimensions. For example, if an image is being read from a file and only $\mathbf{dx}=\mathbf{3.5}$ is given gnuplot uses a delta x and delta y of 3.5.

The following keywords also apply only when generating coordinates. However they may also be used with matrix binary files.

- **32.1.2.11** Flipx, flipy, flipz Sometimes the scanning directions in a binary datafile are not consistent with that assumed by gnuplot. These keywords can flip the scanning direction along dimensions x, y, z.
- **32.1.2.12 Origin** When gnuplot generates coordinates based upon transposition and flip, it attempts to always position the lower left point in the array at the origin, i.e., the data lies in the first quadrant of a Cartesian system after transpose and flip.

To position the array somewhere else on the graph, the **origin** keyword directs gnuplot to position the lower left point of the array at a point specified by a tuple. The tuple should be a double for **plot** and a triple for **splot**. For example, **origin**=(100,100),(100,200) is for two records in the file and intended for plotting in two dimensions. A second example, **origin**=(0,0,3.5), is for plotting in three dimensions.

32.1.2.13 Center Similar to **origin**, this keyword will position the array such that its center lies at the point given by the tuple. For example, **center=(0,0)**. Center does not apply when the size of the array is **Inf**.

32.1.2.14 Rotate The transpose and flip commands provide some flexibility in generating and orienting coordinates. However, for full degrees of freedom, it is possible to apply a rotational vector described by a rotational angle in two dimensions.

The **rotate** keyword applies to the two-dimensional plane, whether it be **plot** or **splot**. The rotation is done with respect to the positive angle of the Cartesian plane.

The angle can be expressed in radians, radians as a multiple of pi, or degrees. For example, rotate=1.5708, rotate=0.5pi and rotate=90deg are equivalent.

If **origin** is specified, the rotation is done about the lower left sample point before translation. Otherwise, the rotation is done about the array **center**.

32.1.2.15 Perpendicular For **splot**, the concept of a rotational vector is implemented by a triple representing the vector to be oriented normal to the two-dimensional x-y plane. Naturally, the default is (0,0,1). Thus specifying both rotate and perpendicular together can orient data myriad ways in three-space.

The two-dimensional rotation is done first, followed by the three-dimensional rotation. That is, if R' is the rotational 2 x 2 matrix described by an angle, and P is the 3 x 3 matrix projecting (0,0,1) to (xp,yp,zp), let R be constructed from R' at the upper left sub-matrix, 1 at element 3,3 and zeros elsewhere. Then the matrix formula for translating data is v' = P R v, where v is the 3 x 1 vector of data extracted from the data file. In cases where the data of the file is inherently not three-dimensional, logical rules are used to place the data in three-space. (E.g., usually setting the z-dimension value to zero and placing 2D data in the x-y plane.)

32.1.2.16 Binary_examples Examples:

```
# Selects two float values (second one implicit) with a float value
# discarded between them for an indefinite length of 1D data.
plot '<file_name>' binary format="%float%*float" using 1:2 with lines
# The data file header contains all details necessary for creating
# coordinates from an EDF file.
plot '<file_name>' binary filetype=edf with image
plot '<file_name > .edf' binary filetype = auto with image
# Selects three unsigned characters for components of a raw RGB image
# and flips the y-dimension so that typical image orientation (start
# at top left corner) translates to the Cartesian plane. Pixel
# spacing is given and there are two images in the file. One of them
# is translated via origin.
plot '<file_name' binary array=512x1024,1024x512 format='%uchar' \
     dx=2,1 dy=1,2 origin=(0,0),(1024,1024) flipy u 1:2:3 w rgbimage
# Four separate records in which the coordinates are part of the
# data file. The file was created with a endianess different from
# the system on which gnuplot is running.
splot '<file_name>' binary record=30,30,29,26 endian=swap u 1:2:3
```

32.1.3 Every

The **every** keyword allows a periodic sampling of a data set to be plotted.

In the discussion a "point" is a datum defined by a single record in the file; "block" here will mean the same thing as "datablock" (see glossary (p. 27)).

Syntax:

The data points to be plotted are selected according to a loop from **start_point** to **end_point** with increment **point_incr** and the blocks according to a loop from **start_block** to **end_block** with increment **block_incr**.

The first datum in each block is numbered '0', as is the first block in the file.

Note that records containing unplottable information are counted.

Any of the numbers can be omitted; the increments default to unity, the start values to the first point or block, and the end values to the last point or block. If **every** is not specified, all points in all lines are plotted.

Examples:

```
every :::3::3  # selects just the fourth block ('0' is first)
every ::::9  # selects the first 10 blocks
every 2:2  # selects every other point in every other block
every ::5::15  # selects points 5 through 15 in each block

See
    simple plot demos (simple.dem)
,
    Non-parametric splot demos
, and
    Parametric splot demos
```

32.1.4 Example datafile

This example plots the data in the file "population.dat" and a theoretical curve:

```
pop(x) = 103*exp((1965-x)/10)
plot [1960:1990] 'population.dat', pop(x)
```

The file "population.dat" might contain:

```
# Gnu population in Antarctica since 1965
1965 103
1970 55
1975 34
1980 24
1985 10
```

32.1.5 Index

The **index** keyword allows only some of the data sets in a multi-data-set file to be plotted.

```
plot 'file' index <m>{{:<n>}:}
```

Data sets are separated by pairs of blank records. **index** <**m**> selects only set <m>; **index** <m>:<n> selects sets in the range <m> to <n>; and **index** <m>:<n>:<p> selects indices <m>, <m>+<p>, <m>+2<p>, etc., but stopping at <n>. Following C indexing, the index 0 is assigned to the first data set in the file. Specifying too large an index results in an error message. If **index** is not specified, all sets are plotted as a single data set.

Example:

```
plot 'file' index 4:5
```

32.1.6 Smooth

gnuplot includes a few general-purpose routines for interpolation and approximation of data; these are grouped under the **smooth** option. More sophisticated data processing may be performed by preprocessing the data externally or by using **fit** with an appropriate model.

Syntax:

```
smooth {unique | frequency | csplines | acsplines | bezier | sbezier}
```

unique and **frequency** plot the data after making them monotonic. Each of the other routines uses the data to determine the coefficients of a continuous curve between the endpoints of the data. This curve is then plotted in the same manner as a function, that is, by finding its value at uniform intervals along the abscissa (see **set samples** (**p. 104**)) and connecting these points with straight line segments (if a line style is chosen).

If **autoscale** is in effect, the ranges will be computed such that the plotted curve lies within the borders of the graph.

If **autoscale** is not in effect, and the smooth option is either **acspline** or **cspline**, the sampling of the generated curve is done across the intersection of the x range covered by the input data and the fixed abscissa range as defined by **set xrange**.

If too few points are available to allow the selected option to be applied, an error message is produced. The minimum number is one for **unique** and **frequency**, four for **acsplines**, and three for the others.

The **smooth** options have no effect on function plots.

32.1.6.1 Acsplines The acsplines option approximates the data with a "natural smoothing spline". After the data are made monotonic in x (see **smooth unique (p. 53)**), a curve is piecewise constructed from segments of cubic polynomials whose coefficients are found by the weighting the data points; the weights are taken from the third column in the data file. That default can be modified by the third entry in the **using** list, e.g.,

```
plot 'data-file' using 1:2:(1.0) smooth acsplines
```

Qualitatively, the absolute magnitude of the weights determines the number of segments used to construct the curve. If the weights are large, the effect of each datum is large and the curve approaches that produced by connecting consecutive points with natural cubic splines. If the weights are small, the curve is composed of fewer segments and thus is smoother; the limiting case is the single segment produced by a weighted linear least squares fit to all the data. The smoothing weight can be expressed in terms of errors as a statistical weight for a point divided by a "smoothing factor" for the curve so that (standard) errors in the file can be used as smoothing weights.

Example:

```
sw(x,S)=1/(x*x*S)
plot 'data_file' using 1:2:(sw(\$3,100)) smooth acsplines
```

32.1.6.2 Bezier The bezier option approximates the data with a Bezier curve of degree n (the number of data points) that connects the endpoints.

- **32.1.6.3** Csplines The csplines option connects consecutive points by natural cubic splines after rendering the data monotonic (see smooth unique (p. 53)).
- **32.1.6.4** Sbezier The sbezier option first renders the data monotonic (unique) and then applies the bezier algorithm.
- **32.1.6.5** Unique The unique option makes the data monotonic in x; points with the same x-value are replaced by a single point having the average y-value. The resulting points are then connected by straight line segments.

demos

32.1.6.6 Frequency The frequency option makes the data monotonic in x; points with the same x-value are replaced by a single point having the summed y-values. The resulting points are then connected by straight line segments.

32.1.7 Special-filenames

A special filename of '-' specifies that the data are inline; i.e., they follow the command. Only the data follow the command; **plot** options like filters, titles, and line styles remain on the **plot** command line. This is similar to << in unix shell script, and \$DECK in VMS DCL. The data are entered as though they are being read from a file, one data point per record. The letter "e" at the start of the first column terminates data entry. The **using** option can be applied to these data — using it to filter them through a function might make sense, but selecting columns probably doesn't!

'-' is intended for situations where it is useful to have data and commands together, e.g., when **gnuplot** is run as a sub-process of some front-end application. Some of the demos, for example, might use this feature. While **plot** options such as **index** and **every** are recognized, their use forces you to enter data that won't be used. For example, while

```
plot '-' index 0, '-' index 1
2
4
6
10
12
14
e
2
4
6
10
12
14
e
2
14
6
```

does indeed work,

```
plot '-', '-'
2
4
6
e
10
12
14
e
```

is a lot easier to type.

If you use '-' with replot, you may need to enter the data more than once (see replot (p. 62)).

A blank filename ('') specifies that the previous filename should be reused. This can be useful with things like

```
plot 'a/very/long/filename' using 1:2, '' using 1:3, '' using 1:4
```

(If you use both '-' and '' on the same **plot** command, you'll need to have two sets of inline data, as in the example above.)

On some computer systems with a popen function (Unix), the datafile can be piped through a shell command by starting the file name with a '<'. For example,

```
pop(x) = 103*exp(-x/10)
plot "< awk '{print $1-1965, $2}' population.dat", pop(x)</pre>
```

would plot the same information as the first population example but with years since 1965 as the x axis. If you want to execute this example, you have to delete all comments from the data file above or substitute the following command for the first part of the command above (the part up to the comma):

```
plot "< awk '$0 !~ /^#/ {print $1-1965, $2}' population.dat"
```

While this approach is most flexible, it is possible to achieve simple filtering with the **using** or **thru** keywords.

32.1.8 Thru

The thru function is provided for backward compatibility.

Syntax:

```
plot 'file' thru f(x)
```

It is equivalent to:

```
plot 'file' using 1:(f($2))
```

While the latter appears more complex, it is much more flexible. The more natural

```
plot 'file' thru f(y)
```

also works (i.e. you can use y as the dummy variable).

thru is parsed for splot and fit but has no effect.

32.1.9 Using

The most common datafile modifier is using.

Syntax:

```
plot 'file' using {<entry> {:<entry> {:<entry> ...}}} {'format'}
```

If a format is specified, each datafile record is read using the C library's 'scanf' function, with the specified format string. Otherwise the record is read and broken into columns at spaces or tabs. A format cannot be specified if time-format data is being used (this must be done by **set data time**).

The resulting array of data is then sorted into columns according to the entries. Each <entry> may be a simple column number, which selects the datum, an expression enclosed in parentheses, or empty. The expression can use \$1 to access the first item read, \$2 for the second item, and so on. It can also use **column(x)** and **valid(x)** where x is an arbitrary expression resulting in an integer. **column(x)** returns the x'th datum; **valid(x)** tests that the datum in the x'th column is a valid number. A column number of 0 generates a number increasing (from zero) with each point, and is reset upon encountering two blank records. A column number of -1 gives the dataline number, which starts at 0, increments

at single blank records, and is reset at double blank records. A column number of -2 gives the index number, which is incremented only when two blank records are found. An empty <entry> will default to its order in the list of entries. For example, using ::4 is interpreted as using 1:2:4.

N.B. — the **call** command also uses \$'s as a special character. See **call** (**p. 35**) for details about how to include a column number in a **call** (**p. 35**) argument list.

If the **using** list has but a single entry, that <entry> will be used for y and the data point number is used for x; for example, "**plot** 'file' **using** 1" is identical to "**plot** 'file' **using** 0:1". If the **using** list has two entries, these will be used for x and y. Additional entries are usually errors in x and/or y. See **set style** (**p.** 105) for details about plotting styles that make use of error information, and fit (**p.** 36) for use of error information in curve fitting.

'scanf' accepts several numerical specifications but **gnuplot** requires all inputs to be double-precision floating-point variables, so "%lf" is essentially the only permissible specifier. A format string given by the user must contain at least one such input specifier, and no more than seven of them. 'scanf' expects to see white space — a blank, tab ("\t"), newline ("\n"), or formfeed ("\f") — between numbers; anything else in the input stream must be explicitly skipped.

Note that the use of "\t", "\n", or "\f" requires use of double-quotes rather than single-quotes.

Examples:

This creates a plot of the sum of the 2nd and 3rd data against the first: The format string specifies comma-rather than space-separated columns. The same result could be achieved by specifying set datafile separator ",".

```
plot 'file' using 1:($2+$3) '%lf,%lf,%lf'
```

In this example the data are read from the file "MyData" using a more complicated format:

```
plot 'MyData' using "%*lf%lf%*20[^\n]%lf"
```

The meaning of this format is:

```
%*lf ignore a number
%lf read a double-precision number (x by default)
%*20[^\n] ignore 20 non-newline characters
%lf read a double-precision number (y by default)
```

One trick is to use the ternary ?: operator to filter data:

```
plot 'file' using 1:($3>10 ? $2 : 1/0)
```

which plots the datum in column two against that in column one provided the datum in column three exceeds ten. 1/0 is undefined; **gnuplot** quietly ignores undefined points, so unsuitable points are suppressed.

In fact, you can use a constant expression for the column number, provided it doesn't start with an opening parenthesis; constructs like using 0+(complicated expression) can be used. The crucial point is that the expression is evaluated once if it doesn't start with a left parenthesis, or once for each data point read if it does.

If timeseries data are being used, the time can span multiple columns. The starting column should be specified. Note that the spaces within the time must be included when calculating starting columns for other data. E.g., if the first element on a line is a time with an embedded space, the y value should be specified as column three.

It should be noted that **plot** 'file', **plot** 'file' using 1:2, and **plot** 'file' using (\$1):(\$2) can be subtly different: 1) if file has some lines with one column and some with two, the first will invent x values when they are missing, the second will quietly ignore the lines with one column, and the third will store an undefined value for lines with one point (so that in a plot with lines, no line joins points across the bad point); 2) if a line contains text at the first column, the first will abort the plot on an error, but the second and third should quietly skip the garbage.

In fact, it is often possible to plot a file with lots of lines of garbage at the top simply by specifying

```
plot 'file' using 1:2
```

However, if you want to leave text in your data files, it is safer to put the comment character (#) in the first column of the text lines.

```
Feeble using demos.
```

If gnuplot is built with configuration option –enable-datastrings, then additional modifiers to using can specify handling of text fields in the datafile. See datastrings (p. 21), using xticlabels (p. 56), using title (p. 56).

32.1.9.1 Using title If gnuplot is built with configuration option –enable-datastrings, then the first entry of a column of the input data file can be used as a string to provide the plot title in the key box. The column containing specified is independent of the column[s] used for the plot itself.

```
plot 'data' using 1:(\$2/\$3) title 2
```

In this case the entry in the first row of column 2 will be used for the key entry of the plot constructed from dividing column 2 by column 3. The entry in the first row of column 3 will be ignored.

32.1.9.2 Xticlabels If gnuplot is built with configuration option –enable-datastrings, then a column of the input data file can be used to label axis tic marks in a 2-D plot command. The format of such a plot command is

```
plot 'datafile' using <xcol>:<ycol>:xticlabels(<labelcol>) with <plotstyle>
```

The **xticlabels**(<**val**>) option must be the final entry of the **using** column specifications. For each point which has a valid pair of X,Y coordinates, the text field found in column <labelcol> is added to the list of xtic labels at the same X coordinate as the point it belongs to. **xticlabels**(<**labelcol**>) may be shortened to **xtic**(<**labelcol**>).

- 32.1.9.3 X2ticlabels See plot using xticlabels (p. 56).
- 32.1.9.4 Yticlabels See plot using xticlabels (p. 56).
- 32.1.9.5 Y2ticlabels See plot using xticlabels (p. 56).
- 32.1.9.6 Zticlabels See plot using xticlabels (p. 56).

32.2 Errorbars

Error bars are supported for 2-d data file plots by reading one to four additional columns (or **using** entries); these additional values are used in different ways by the various errorbar styles.

In the default situation, **gnuplot** expects to see three, four, or six numbers on each line of the data file — either

```
(x, y, ydelta),
(x, y, ylow, yhigh),
(x, y, xdelta),
(x, y, xlow, xhigh),
(x, y, xdelta, ydelta), or
(x, y, xlow, xhigh, ylow, yhigh).
```

The x coordinate must be specified. The order of the numbers must be exactly as given above, though the **using** qualifier can manipulate the order and provide values for missing columns. For example,

```
plot 'file' with errorbars
plot 'file' using 1:2:(sqrt($1)) with xerrorbars
plot 'file' using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars
```

The last example is for a file containing an unsupported combination of relative x and absolute y errors. The **using** entry generates absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified instead of ylow and yhigh, ylow = y - ydelta and yhigh = y + ydelta are derived. If there are only two numbers on the record, yhigh and ylow are both set to y. The x error bar is a horizontal line computed in the same fashion. To get lines plotted between the data points, **plot** the data file twice, once with errorbars and once with lines (but remember to use the **notitle** option on one to avoid two entries in the key). Alternately, use the errorlines command (see **errorlines** (p. 57)).

The error bars have crossbars at each end unless set bars is used (see set bars (p. 68) for details).

If autoscaling is on, the ranges will be adjusted to include the error bars.

See also

```
errorbar demos.
```

See plot using (p. 54), plot with (p. 59), and set style (p. 105) for more information.

32.3 Errorlines

Lines with error bars are supported for 2-d data file plots by reading one to four additional columns (or using entries); these additional values are used in different ways by the various errorlines styles.

In the default situation, **gnuplot** expects to see three, four, or six numbers on each line of the data file—either

```
(x, y, ydelta),
(x, y, ylow, yhigh),
(x, y, xdelta),
(x, y, xlow, xhigh),
(x, y, xdelta, ydelta), or
(x, y, xlow, xhigh, ylow, yhigh).
```

The x coordinate must be specified. The order of the numbers must be exactly as given above, though the **using** qualifier can manipulate the order and provide values for missing columns. For example,

```
plot 'file' with errorlines
plot 'file' using 1:2:(sqrt($1)) with xerrorlines
plot 'file' using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines
```

The last example is for a file containing an unsupported combination of relative x and absolute y errors. The **using** entry generates absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified instead of ylow and yhigh, ylow = y - ydelta and yhigh = y + ydelta are derived. If there are only two numbers on the record, yhigh and ylow are both set to y. The x error bar is a horizontal line computed in the same fashion.

The error bars have crossbars at each end unless set bars is used (see set bars (p. 68) for details).

If autoscaling is on, the ranges will be adjusted to include the error bars.

See plot using (p. 54), plot with (p. 59), and set style (p. 105) for more information.

32.4 Parametric

When in parametric mode (**set parametric**) mathematical expressions must be given in pairs for **plot** and in triplets for **splot**.

Examples:

```
plot sin(t),t**2
splot cos(u)*cos(v),cos(u)*sin(v),sin(u)
```

Data files are plotted as before, except any preceding parametric function must be fully specified before a data file is given as a plot. In other words, the x parametric function ($\sin(t)$ above) and the y parametric function (t^{**2} above) must not be interrupted with any modifiers or data functions; doing so will generate a syntax error stating that the parametric function is not fully specified.

Other modifiers, such as **with** and **title**, may be specified only after the parametric function has been completed:

```
plot sin(t), t**2 title 'Parametric example' with linespoints
```

See also

Parametric Mode Demos.

32.5 Ranges

The optional ranges specify the region of the graph that will be displayed.

Syntax:

```
[{<dummy-var>=}{{<min>}:{<max>}}]
[{{<min>}:{<max>}}]
```

The first form applies to the independent variable (**xrange** or **trange**, if in parametric mode). The second form applies to the dependent variable **yrange** (and **xrange**, too, if in parametric mode). <dummyvar> is a new name for the independent variable. (The defaults may be changed with **set dummy**.) The optional <min> and <max> terms can be constant expressions or *.

In non-parametric mode, the order in which ranges must be given is **xrange** and **yrange**.

In parametric mode, the order for the **plot** command is **trange**, **xrange**, and **yrange**. The following **plot** command shows setting the **trange** to [-pi:pi], the **xrange** to [-1.3:1.3] and the **yrange** to [-1:1] for the duration of the graph:

```
plot [-pi:pi] [-1.3:1.3] [-1:1] sin(t),t**2
```

Note that the x2range and y2range cannot be specified here — \mathbf{set} x2range and \mathbf{set} y2range must be used

Ranges are interpreted in the order listed above for the appropriate mode. Once all those needed are specified, no further ones must be listed, but unneeded ones cannot be skipped — use an empty range [] as a placeholder.

* can be used to allow autoscaling of either of min and max. See also set autoscale (p. 66).

Ranges specified on the **plot** or **splot** command line affect only that graph; use the **set xrange**, **set yrange**, etc., commands to change the default ranges for future graphs.

With time data, you must provide the range (in the same manner as the time appears in the datafile) within quotes. **gnuplot** uses the **timefmt** string to read the value — see **set timefmt** (**p. 117**).

Examples:

This uses the current ranges:

```
plot cos(x)
```

This sets the x range only:

```
plot [-10:30] \sin(pi*x)/(pi*x)
```

This is the same, but uses t as the dummy-variable:

```
plot [t = -10 : 30] \sin(pi*t)/(pi*t)
```

This sets both the x and y ranges:

```
plot [-pi:pi] [-3:3] tan(x), 1/x
```

This sets only the y range, and turns off autoscaling on both axes:

```
plot [] [-2:\sin(5)*-8] \sin(x)**besj0(x)
```

This sets xmax and ymin only:

```
plot [:200] [-pi:] exp(sin(x))
```

This sets the x range for a timeseries:

```
set timefmt "%d/%m/%y %H:%M"
plot ["1/6/93 12:00":"5/6/93 12:00"] 'timedata.dat'
```

32.6 Title

A line title for each function and data set appears in the key, accompanied by a sample of the line and/or symbol used to represent it. It can be changed by using the **title** option.

Syntax:

```
title "<title>" | notitle
```

where <title> is the new title of the line and must be enclosed in quotes. The quotes will not be shown in the key. A special character may be given as a backslash followed by its octal value ("\345"). The tab character "\t" is understood. Note that backslash processing occurs only for strings enclosed in double quotes — use single quotes to prevent such processing. The newline character "\n" is not processed in key entries in either type of string.

The line title and sample can be omitted from the key by using the keyword **notitle**. A null title (**title** '') is equivalent to **notitle**. If only the sample is wanted, use one or more blanks (**title** '').

If **key autotitles** is set (which is the default) and neither **title** nor **notitle** are specified the line title is the function name or the file name as it appears on the **plot** command. If it is a file name, any datafile modifiers specified will be included in the default title.

The layout of the key itself (position, title justification, etc.) can be controlled by **set key**. Please see **set key** (p. 84) for details.

Examples:

This plots y=x with the title 'x':

```
plot x
```

This plots x squared with title " x^2 " and file "data.1" with title "measured data":

```
plot x**2 title "x^2", 'data.1' t "measured data"
```

This puts an untitled circular border around a polar graph:

```
set polar; plot my_function(t), 1 notitle
```

32.7 With

Functions and data may be displayed in one of a large number of styles. The **with** keyword provides the means of selection.

Syntax:

where <style> is either lines, points, linespoints, impulses, dots, steps, fsteps, histeps, errorbars, labels, xerrorbars, yerrorbars, xyerrorbars, errorlines, xerrorlines, yerrorlines, xyerrorbars, boxes, histograms, filledcurves, boxerrorbars, boxxyerrorbars, financebars, candlesticks, vectors, image, rgbimage or pm3d. Some of these styles require additional information. See plotting styles (p. 108) for details of each style. fill is relevant only to certain 2D plots (currently boxes boxxyerrorbars and candlesticks). Note that filledcurves and pm3d can take an additional option not listed above (the latter only when used in the splot command) — see their help or examples below for more details.

Default styles are chosen with the set style function and set style data commands.

By default, each function and data file will use a different line type and point type, up to the maximum number of available types. All terminal drivers support at least six different point types, and re-use them, in order, if more are required. The LaTeX driver supplies an additional six point types (all variants of a circle), and thus will only repeat after 12 curves are plotted with points. The PostScript drivers (**postscript**) supplies a total of 64.

If you wish to choose the line or point type for a single plot, line_type> and <point_type> may be specified. These are positive integer constants (or expressions) that specify the line type and point type to be used for the plot. Use **test** to display the types available for your terminal.

You may also scale the line width and point size for a plot by using e_width> and <point_size>, which are specified relative to the default values for each terminal. The pointsize may also be altered globally — see set pointsize (p. 102) for details. But note that both <point_size> as set here and as set by set pointsize multiply the default point size — their effects are not cumulative. That is, set pointsize 2; plot x w p ps 3 will use points three times default size, not six.

It is also possible to specify **pointsize variable** either as part of a line style or for an individual plot. In this case one extra column of input is required, i.e. 3 columns for a 2D plot and 4 columns for a 3D splot. The size of each individual point is determined by multiplying the global pointsize by the value read from the data file.

If you have defined specific line type/width and point type/size combinations with **set style line**, one of these may be selected by setting style> to the index of the desired style.

If gnuplot was built with **pm3d** support, the special keyword **palette** is allowed for smooth color change of lines, points and dots in **splots**. The color is chosen from a smooth palette which was set previously with the command **set palette**. The color value corresponds to the z-value of the point coordinates or to the color coordinate if specified by the 4th parameter in **using**. Both 2d and 3d plots (**plot** and **splot** commands) can use palette colors as specified by either their fractional value or the corresponding value mapped to the colorbox range. 2d plots can not use palette colors mapped by Z value. See **colors** (**p. 27**), set **palette** (**p. 97**), linetype (**p. 27**).

The keywords may be abbreviated as indicated.

plot 'population' with boxes

Note that the **linewidth**, **pointsize** and **palette** options are not supported by all terminals.

Examples:

```
This plots sin(x) with impulses:
    plot sin(x) with impulses

This plots x with points, x**2 with the default:
    plot x w points, x**2

This plots tan(x) with the default function style, file "data.1" with lines:
    plot [ ] [-2:5] tan(x), 'data.1' with 1

This plots "leastsq.dat" with impulses:
    plot 'leastsq.dat' w i

This plots the data file "population" with boxes:
```

This plots "exper.dat" with errorbars and lines connecting the points (errorbars require three or four columns):

```
plot 'exper.dat' w lines, 'exper.dat' notitle w errorbars
```

Another way to plot "exper.dat" with errorlines (errorbars require three or four columns):

```
plot 'exper.dat' w errorlines
```

This plots $\sin(x)$ and $\cos(x)$ with linespoints, using the same line type but different point types:

```
plot sin(x) with linesp lt 1 pt 3, cos(x) with linesp lt 1 pt 4
```

This plots file "data" with points of type 3 and twice usual size:

```
plot 'data' with points pointtype 3 pointsize 2
```

This plots file "data" with variable pointsize read from column 4

```
plot 'data' using 1:2:4 with points pt 5 pointsize variable
```

This plots two data sets with lines differing only by weight:

```
plot 'd1' t "good" w l lt 2 lw 3, 'd2' t "bad" w l lt 2 lw 1
```

This plots filled curve of x*x and a color stripe:

```
plot x*x with filledcurve closed, 40 with filledcurve y1=10
```

This plots x*x and a color box:

```
plot x*x, (x>=-5 && x<=5 ? 40 : 1/0) with filledcurve y1=10 lt 8
```

This plots a surface with color lines:

```
splot x*x-y*y with line palette
```

This plots two color surfaces at different altitudes:

```
splot x*x-y*y with pm3d, x*x+y*y with pm3d at t
```

33 Print

The **print** command prints the value of <expression> to the screen. It is synonymous with **pause 0**. <expression> may be anything that **gnuplot** can evaluate that produces a number, or it can be a string. Syntax:

```
print <expression> {, <expression>, ...}
```

See expressions (p. 22). The output file can be set with set print.

34 Pwd

The **pwd** command prints the name of the working directory to the screen.

35 Quit

The **exit** and **quit** commands and END-OF-FILE character will exit **gnuplot**. Each of these commands will clear the output device (as does the **clear** command) before exiting.

36 Replot

The **replot** command without arguments repeats the last **plot** or **splot** command. This can be useful for viewing a plot with different **set** options, or when generating the same plot for several devices.

Arguments specified after a **replot** command will be added onto the last **plot** or **splot** command (with an implied ',' separator) before it is repeated. **replot** accepts the same arguments as the **plot** and **splot** commands except that ranges cannot be specified. Thus you can use **replot** to plot a function against the second axes if the previous command was **plot** but not if it was **splot**.

```
N.B. — use of plot '-'; ...; replot
```

is not recommended. **gnuplot** does not store the inline data internally, so since **replot** appends new information to the previous **plot** and then executes the modified command, the '-' from the initial **plot** will expect to read inline data again.

Note that **replot** does not work in **multiplot** mode, since it reproduces only the last plot rather than the entire screen.

See also command-line-editing (p. 19) for ways to edit the last plot (p. 45) (splot (p. 129)) command.

See also **show plot** (p. 94) to show the whole current plotting command, and the possibility to copy it into the **history** (p. 43).

37 Reread

The **reread** command causes the current **gnuplot** command file, as specified by a **load** command or on the command line, to be reset to its starting point before further commands are read from it. This essentially implements an endless loop of the commands from the beginning of the command file to the **reread** command. (But this is not necessarily a disaster — **reread** can be very useful when used in conjunction with **if**. See **if** (**p. 43**) for details.) The **reread** command has no effect if input from standard input.

Examples:

Suppose the file "looper" contains the commands

```
a=a+1
plot sin(x*a)
pause -1
if(a<5) reread</pre>
```

and from within **gnuplot** you submit the commands

```
a=0
load 'looper'
```

The result will be four plots (separated by the **pause** message).

Suppose the file "data" contains six columns of numbers with a total yrange from 0 to 10; the first is x and the next are five different functions of x. Suppose also that the file "plotter" contains the commands

```
c_p = c_p+1
plot "$0" using 1:c_p with lines linetype c_p
if(c_p < n_p) reread</pre>
```

and from within **gnuplot** you submit the commands

```
n_p=6
c_p=1
unset key
```

```
set yrange [0:10]
set multiplot
call 'plotter' 'data'
unset multiplot
```

The result is a single graph consisting of five plots. The yrange must be set explicitly to guarantee that the five separate graphs (drawn on top of each other in multiplot mode) will have exactly the same axes. The linetype must be specified; otherwise all the plots would be drawn with the same type. See animate.dem in demo directory for an animated example.

38 Reset

The **reset** command causes all graph-related options that can be set with the **set** command to take on their default values. This command is useful, e.g., to restore the default graph settings at the end of a command file, or to return to a defined state after lots of settings have been changed within a command file. Please refer to the **set** command to see the default values that the various options take.

The following **set** commands do not change the graph status and are thus left unchanged: the terminal set with **set term**, the output file set with **set output** and directory paths set with **set loadpath** and **set fontpath**.

39 Save

The **save** command saves user-defined functions, variables, the **set term** status, all **set** options, or all of these, plus the last **plot** (**splot**) command to the specified file.

Syntax:

```
save {<option>} '<filename>'
```

where <option> is functions, variables, terminal or set. If no option is used, gnuplot saves functions, variables, set options and the last plot (splot) command.

saved files are written in text format and may be read by the **load** command. For **save** with the **set** option or without any option, the **terminal** choice and the **output** filename are written out as a comment, to get an output file that works in other installations of gnuplot, without changes and without risk of unwillingly overwriting files.

save terminal will write out just the terminal status, without the comment marker in front of it. This is mainly useful for switching the terminal setting for a short while, and getting back to the previously set terminal, afterwards, by loading the saved terminal status. Note that for a single gnuplot session you may rather use the other method of saving and restoring current terminal by the commands set term push and set term pop, see set term (p. 115).

The filename must be enclosed in quotes.

The special filename "-" may be used to **save** commands to standard output. On systems which support a popen function (Unix), the output of save can be piped through an external program by starting the file name with a '|'. This provides a consistent interface to **gnuplot**'s internal settings to programs which communicate with **gnuplot** through a pipe. Please see "help batch/interactive" for more details.

Examples:

```
save 'work.gnu'
save functions 'func.dat'
save var 'var.dat'
save set 'options.dat'
save term 'myterm.gnu'
save '-'
save '|grep title >t.gp'
```

40 Set-show

The **set** command can be used to set *lots* of options. No screen is drawn, however, until a **plot**, **splot**, or **replot** command is given.

The **show** command shows their settings; **show** all shows all the settings.

Options changed using **set** can be returned to the default state by giving the corresponding **unset** command. See also the **reset** (**p. 63**) command, which returns all settable parameters to default values.

If a variable contains time/date data, **show** will display it according to the format currently defined by **set timefmt**, even if that was not in effect when the variable was initially defined.

40.1 Angles

By default, **gnuplot** assumes the independent variable in polar graphs is in units of radians. If **set angles degrees** is specified before **set polar**, then the default range is [0:360] and the independent variable has units of degrees. This is particularly useful for plots of data files. The angle setting also applies to 3-d mapping as set via the **set mapping** command.

Syntax:

```
set angles {degrees | radians}
show angles
```

The angle specified in **set grid polar** is also read and displayed in the units specified by **set angles**.

set angles also affects the arguments of the machine-defined functions $\sin(x)$, $\cos(x)$ and $\tan(x)$, and the outputs of $\sin(x)$, $\cos(x)$, $\tan(x)$, $\tan(x)$, and $\arg(x)$. It has no effect on the arguments of hyperbolic functions or Bessel functions. However, the output arguments of inverse hyperbolic functions of complex arguments are affected; if these functions are used, set angles radians must be in effect to maintain consistency between input and output arguments.

```
x={1.0,0.1}
set angles radians
y=sinh(x)
print y  #prints {1.16933, 0.154051}
print asinh(y) #prints {1.0, 0.1}

but

set angles degrees
y=sinh(x)
print y  #prints {1.16933, 0.154051}
print asinh(y) #prints {57.29578, 5.729578}

See also
poldat.dem: polar plot using set angles demo.
```

40.2 Arrow

Arbitrary arrows can be placed on a plot using the **set arrow** command.

Syntax:

```
{linewidth | lw <line_width} } 
unset arrow {<tag>}
show arrow {<tag>}
```

<tag> is an integer that identifies the arrow. If no tag is given, the lowest unused tag value is assigned automatically. The tag can be used to delete or change a specific arrow. To change any attribute of an existing arrow, use the **set arrow** command with the appropriate tag and specify the parts of the arrow to be changed.

The <position>s are specified by either x,y or x,y,z, and may be preceded by first, second, graph, screen, or character to select the coordinate system. Unspecified coordinates default to 0. The end points can be specified in one of five coordinate systems — first or second axes, graph, screen, or character. See coordinates (p. 20) for details. A coordinate system specifier does not carry over from the "from" position to the "to" position. Arrows outside the screen boundaries are permitted but may cause device errors. If the end point is specified by "rto" instead of "to" it is drawn relatively to the start point. For linear axes, graph and screen coordinates, the distance between the start and the end point corresponds to the given relative coordinate. For logarithmic axes, the relative given coordinate corresponds to the factor of the coordinate between start and end point. Thus, a negative relative value or zero are not allowed for logarithmic axes.

Specifying **nohead** produces an arrow drawn without a head — a line segment. This gives you yet another way to draw a line segment on the plot. By default, arrows have heads. Specifying **heads** draws arrow heads on both ends of the line. Not all terminal types support double-ended arrows.

Head size can be controlled by **size** <**length**>,<**angle**>, where <**length**> defines length of each branch of the arrow head and <**angle**> the angle (in degrees) they make with the arrow. <**Length>** is in x-axis units; this can be changed by **first**, **second**, **graph**, **screen**, or **character** before the <**length>**; see **coordinates** (**p. 20**) for details.

Specifying **filled** produces filled arrow heads (if heads are used). Filling is supported on filled-polygon capable terminals, see help of **pm3d** (**p. 95**) for their list, otherwise the arrow heads are closed but not filled. Further, filling is obviously not supported on terminals drawing arrows by their own specific routines, like **fig**, **metafont**, **metapost**, **latex** or **tgif**.

The line style may be selected from a user-defined list of line styles (see **set style line (p. 107)**) or may be defined here by providing values for line_type> (an index from the default list of styles) and/or line_width> (which is a multiplier for the default width).

Note, however, that if a user-defined line style has been selected, its properties (type and width) cannot be altered merely by issuing another **set arrow** command with the appropriate index and **lt** or **lw**.

If **front** is given, the arrow is written on top of the graphed data. If **back** is given (the default), the arrow is written underneath the graphed data. Using **front** will prevent an arrow from being obscured by dense data.

Examples:

To set an arrow pointing from the origin to (1,2) with user-defined style 5, use:

```
set arrow to 1,2 ls 5
```

To set an arrow from bottom left of plotting area to (-5,5,3), and tag the arrow number 3, use:

```
set arrow 3 from graph 0,0 to -5,5,3
```

To change the preceding arrow to end at 1,1,1, without an arrow head and double its width, use:

```
set arrow 3 to 1,1,1 nohead lw 2
```

To draw a vertical line from the bottom to the top of the graph at x=3, use:

```
set arrow from 3, graph 0 to 3, graph 1 nohead
```

To draw a vertical arrow with T-shape ends, use:

```
set arrow 3 from 0,-5 to 0,5 heads size screen 0.1,90
```

To draw an arrow relatively to the start point, where the relative distances are given in graph coordinates, use:

```
set arrow from 0,-5 rto graph 0.1,0.1
```

To draw an arrow with relative end point in logarithmic x axis, use:

```
set logscale x
set arrow from 100,-5 rto 10,10
```

This draws an arrow from 100,-5 to 1000,5. For the logarithmic x axis, the relative coordinate 10 means "factor 10" while for the linear y axis, the relative coordinate 10 means "difference 10".

To delete arrow number 2, use:

```
unset arrow 2

To delete all arrows, use:
   unset arrow

To show all arrows (in tag order), use:
   show arrow

arrows demos.
```

40.3 Autoscale

Autoscaling may be set individually on the x, y or z axis or globally on all axes. The default is to autoscale all axes.

Syntax:

```
set autoscale {<axes>{|min|max|fixmin|fixmax|fix} | fix | keepfix}
unset autoscale {<axes>}
show autoscale
```

where $\langle axes \rangle$ is either x, y, z, cb, x2, y2 or xy. A keyword with min or max appended (this cannot be done with xy) tells gnuplot to autoscale just the minimum or maximum of that axis. If no keyword is given, all axes are autoscaled.

A keyword with **fixmin**, **fixmax** or **fix** appended tells gnuplot to disable extension of the axis range to the next tic mark position, for autoscaled axes using equidistant tics; **set autoscale fix** sets this for all axes. Command **set autoscale keepfix** autoscales all axes while keeping the fix settings.

When autoscaling, the axis range is automatically computed and the dependent axis (y for a **plot** and z for **splot**) is scaled to include the range of the function or data being plotted.

If autoscaling of the dependent axis (y or z) is not set, the current y or z range is used.

Autoscaling the independent variables (x for **plot** and x,y for **splot**) is a request to set the domain to match any data file being plotted. If there are no data files, autoscaling an independent variable has no effect. In other words, in the absence of a data file, functions alone do not affect the x range (or the y range if plotting z = f(x,y)).

Please see set xrange (p. 122) for additional information about ranges.

The behavior of autoscaling remains consistent in parametric mode, (see **set parametric** (**p. 94**)). However, there are more dependent variables and hence more control over x, y, and z axis scales. In parametric mode, the independent or dummy variable is t for **plots** and u,v for **splots**. **autoscale** in parametric mode, then, controls all ranges (t, u, v, x, y, and z) and allows x, y, and z to be fully autoscaled.

Autoscaling works the same way for polar mode as it does for parametric mode for **plot**, with the extension that in polar mode **set dummy** can be used to change the independent variable from t (see **set dummy** (p. 76)).

When tics are displayed on second axes but no plot has been specified for those axes, x2range and y2range are inherited from xrange and yrange. This is done *before* xrange and yrange are autoextended to a whole number of tics, which can cause unexpected results. You can use the **fixmin** or **fixmax** options to avoid this.

Examples:

This sets autoscaling of the y axis (other axes are not affected):

```
set autoscale y
```

This sets autoscaling only for the minimum of the y axis (the maximum of the y axis and the other axes are not affected):

```
set autoscale ymin
```

This disables extension of the x2 axis tics to the next tic mark, thus keeping the exact range as found in the plotted data and functions:

```
set autoscale x2fixmin
set autoscale x2fixmax
```

This sets autoscaling of the x and y axes:

```
set autoscale xy
```

This sets autoscaling of the x, y, z, x2 and y2 axes:

```
set autoscale
```

This disables autoscaling of the x, y, z, x2 and y2 axes:

```
unset autoscale
```

This disables autoscaling of the z axis only:

```
unset autoscale z
```

40.3.1 Parametric mode

When in parametric mode (**set parametric**), the xrange is as fully scalable as the y range. In other words, in parametric mode the x axis can be automatically scaled to fit the range of the parametric function that is being plotted. Of course, the y axis can also be automatically scaled just as in the non-parametric case. If autoscaling on the x axis is not set, the current x range is used.

Data files are plotted the same in parametric and non-parametric mode. However, there is a difference in mixed function and data plots: in non-parametric mode with autoscaled x, the x range of the datafile controls the x range of the functions; in parametric mode it has no influence.

For completeness a last command **set autoscale t** is accepted. However, the effect of this "scaling" is very minor. When **gnuplot** determines that the t range would be empty, it makes a small adjustment if autoscaling is true. Otherwise, **gnuplot** gives an error. Such behavior may, in fact, not be very useful and the command **set autoscale t** is certainly questionable.

splot extends the above ideas as you would expect. If autoscaling is set, then x, y, and z ranges are computed and each axis scaled to fit the resulting data.

40.3.2 Polar mode

When in polar mode (**set polar**), the xrange and the yrange are both found from the polar coordinates, and thus they can both be automatically scaled. In other words, in polar mode both the x and y axes can be automatically scaled to fit the ranges of the polar function that is being plotted.

When plotting functions in polar mode, the rrange may be autoscaled. When plotting data files in polar mode, the trange may also be autoscaled. Note that if the trange is contained within one quadrant, autoscaling will produce a polar plot of only that single quadrant.

Explicitly setting one or two ranges but not others may lead to unexpected results. See also

```
polar demos.
```

40.4 Bars

The **set bars** command controls the tics at the ends of error bars, and also the width of the boxes in plot styles candlesticks and financebars.

Syntax:

```
set bars {small | large | <size>}
unset bars
show bars
```

small is a synonym for 0.0, and large for 1.0. The default is 1.0 if no size is given.

40.5 Bmargin

The command set bmargin sets the size of the bottom margin. Please see set margin (p. 89) for details.

40.6 Border

The **set border** and **unset border** commands control the display of the graph borders for the **plot** and **splot** commands. Note that the borders do not necessarily coincide with the axes; with **plot** they often do, but with **splot** they usually do not.

Syntax:

With a **splot** displayed in an arbitrary orientation, like **set view 56,103**, the four corners of the x-y plane can be referred to as "front", "back", "left" and "right". A similar set of four corners exist for the top surface, of course. Thus the border connecting, say, the back and right corners of the x-y plane is the "bottom right back" border, and the border connecting the top and bottom front corners is the "front vertical". (This nomenclature is defined solely to allow the reader to figure out the table that follows.)

The borders are encoded in a 12-bit integer: the bottom four bits control the border for **plot** and the sides of the base for **splot**; the next four bits control the verticals in **splot**; the top four bits control the edges on top of the **splot**. In detail, **<integer>** should be the sum of the appropriate entries from the following table:

Graph Border Encoding		
Bit	plot	splot
1	bottom	bottom left front
2	left	bottom left back
4	top	bottom right front
8	right	bottom right back
16	no effect	left vertical
32	no effect	back vertical
64	no effect	right vertical
128	no effect	front vertical
256	no effect	top left back
512	no effect	top right back
1024	no effect	top left front
2048	no effect	top right front

Various bits or combinations of bits may be added together in the command.

The default is 31, which is all four sides for **plot**, and base and z axis for **splot**.

Using the optional <line_style>, <line_type> and <line_width> specifiers, the way the border lines are drawn can be influenced (limited by what the current terminal driver supports).

For **plot**, tics may be drawn on edges other than bottom and left by enabling the second axes – see **set xtics** (**p. 123**) for details.

If a **splot** draws only on the base, as is the case with "unset surface; set contour base", then the verticals and the top are not drawn even if they are specified.

The **set grid** options 'back', 'front' and 'layerdefault' also control the order in which the border lines are drawn with respect to the output of the plotted data.

Examples:

```
Draw default borders:
```

```
set border
```

Draw only the left and bottom (**plot**) or both front and back bottom left (**splot**) borders:

```
set border 3
```

Draw a complete box around a **splot**:

```
set border 4095
```

Draw a topless box around a **splot**, omitting the front vertical:

```
set border 127+256+512 # or set border 1023-128
```

Draw only the top and right borders for a **plot** and label them as axes: unset xtics; unset ytics; set x2tics; set y2tics; set border 12

40.7 Boxwidth

The set boxwidth command is used to set the default width of boxes in the boxes, boxerrorbars, candlesticks and histograms styles.

Syntax:

```
set boxwidth {<width>} {absolute|relative}
show boxwidth
```

If a data file is plotted without the width being specified in the third, fourth, or fifth column (or **using** entry), or if a function is plotted, the width of each box is set by the **set boxwidth** command. (If a width is given both in the file and by the **set boxwidth** command, the one in the file is used.) If the width is not specified in one of these ways, the width of each box will be calculated automatically so that it touches the adjacent boxes. **relative** indicates, that the specified boxwidth is a scaling factor for the automatically calculated boxwidth, otherwise the boxwidth is taken as an **absolute** value (which is the default). In a four-column data set, the fourth column will be interpreted as the box width unless the width is set to -2.0, in which case the width will be calculated automatically. See **set style boxerrorbars** (p. 108) for more details.

To set the box width to automatic use the command

```
set boxwidth
```

```
or, for four-column data,
```

```
set boxwidth -2
```

The same effect can be achieved with the **using** keyword in **plot**:

```
plot 'file' using 1:2:3:4:(-2)
```

To set the box width to half of the automatic size use

```
set boxwidth 0.5 relative
```

To set the box width to an absolute value of 2 use

```
set boxwidth 2 absolute
```

or, if you didn't specify a relative boxwidth before,

```
set boxwidth 2
```

40.8 Clabel

gnuplot will vary the linetype used for each contour level when clabel is set. When this option on (the default), a legend labels each linestyle with the z level it represents. It is not possible at present to separate the contour labels from the surface key.

Syntax:

```
set clabel {'<format>'}
unset clabel
show clabel
```

The default for the format string is %8.3g, which gives three decimal places. This may produce poor label alignment if the key is altered from its default configuration.

The first contour linetype, or only contour linetype when clabel is off, is the surface linetype +1; contour points are the same style as surface points.

See also set contour (p. 73).

40.9 Clip

gnuplot can clip data points and lines that are near the boundaries of a graph.

Syntax:

```
set clip <clip-type>
unset clip <clip-type>
show clip
```

Three clip types for points and lines are supported by **gnuplot**: **points**, **one**, and **two**. One, two, or all three clip types may be active for a single graph. Note that clipping of color filled quadrangles drawn by **pm3d** maps and surfaces is not controlled by this command, but by **set pm3d clip1in** and **set pm3d clip4in**.

The **points** clip type forces **gnuplot** to clip (actually, not plot at all) data points that fall within but too close to the boundaries. This is done so that large symbols used for points will not extend outside the boundary lines. Without clipping points near the boundaries, the plot may look bad. Adjusting the x and y ranges may give similar results.

Setting the **one** clip type causes **gnuplot** to draw a line segment which has only one of its two endpoints within the graph. Only the in-range portion of the line is drawn. The alternative is to not draw any portion of the line segment.

Some lines may have both endpoints out of range, but pass through the graph. Setting the **two** clip-type allows the visible portion of these lines to be drawn.

In no case is a line drawn outside the graph.

The defaults are noclip points, clip one, and noclip two.

To check the state of all forms of clipping, use

```
show clip
```

For backward compatibility with older versions, the following forms are also permitted:

```
set clip unset clip
```

set clip is synonymous with set clip points; unset clip turns off all three types of clipping.

40.10 Cntrparam

set cntrparam controls the generation of contours and their smoothness for a contour plot. show contour displays current settings of cntrparam as well as contour.

Syntax:

This command has two functions. First, it sets the values of z for which contour points are to be determined (by linear interpolation between data points or function isosamples.) Second, it controls the way contours are drawn between the points determined to be of equal z. <n> should be an integral constant expression and <z1>, <z2> ... any constant expressions. The parameters are:

linear, **cubicspline**, **bspline** — Controls type of approximation or interpolation. If **linear**, then straight line segments connect points of equal z magnitude. If **cubicspline**, then piecewise-linear contours are interpolated between the same equal z points to form somewhat smoother contours, but which may undulate. If **bspline**, a guaranteed-smoother curve is drawn, which only approximates the position of the points of equal-z.

points — Eventually all drawings are done with piecewise-linear strokes. This number controls the number of line segments used to approximate the **bspline** or **cubicspline** curve. Number of cubicspline or bspline segments (strokes) = **points** * number of linear segments.

order — Order of the bspline approximation to be used. The bigger this order is, the smoother the resulting contour. (Of course, higher order bspline curves will move further away from the original piecewise linear data.) This option is relevant for **bspline** mode only. Allowed values are integers in the range from 2 (linear) to 10.

levels — Selection of contour levels, controlled by **auto** (default), **discrete**, **incremental**, and <n>, number of contour levels.

For **auto**, <n> specifies a nominal number of levels; the actual number will be adjusted to give simple labels. If the surface is bounded by zmin and zmax, contours will be generated at integer multiples of dz between zmin and zmax, where dz is 1, 2, or 5 times some power of ten (like the step between two tic marks).

For **levels discrete**, contours will be generated at $z = \langle z1 \rangle$, $\langle z2 \rangle$... as specified; the number of discrete levels sets the number of contour levels. In **discrete** mode, any **set cntrparam levels** $\langle n \rangle$ are ignored.

For **incremental**, contours are generated at values of z beginning at <start> and increasing by <increment>, until the number of contours is reached. <end> is used to determine the number of contour levels, which will be changed by any subsequent **set cntrparam levels** <**n**>.

If the command **set cntrparam** is given without any arguments specified, the defaults are used: linear, 5 points, order 4, 5 auto levels.

Examples:

```
set cntrparam bspline
set cntrparam points 7
set cntrparam order 10
```

To select levels automatically, 5 if the level increment criteria are met:

```
set cntrparam levels auto 5
```

To specify discrete levels at .1, .37, and .9:

```
set cntrparam levels discrete .1,1/exp(1),.9
```

To specify levels from 0 to 4 with increment 1:

```
set cntrparam levels incremental 0,1,4
```

To set the number of levels to 10 (changing an incremental end or possibly the number of auto levels):

```
set cntrparam levels 10
```

To set the start and increment while retaining the number of levels:

```
set cntrparam levels incremental 100,50
```

See also **set contour** (**p. 73**) for control of where the contours are drawn, and **set clabel** (**p. 70**) for control of the format of the contour labels and linetypes.

See also

```
contours demo (contours.dem)
and
contours with user defined levels demo (discrete.dem).
```

40.11 Color box

The color scheme, i.e. the gradient of the smooth color with min_z and max_z values of **pm3d**'s **palette**, is drawn in a color box unless **unset colorbox**.

Colorbox position can be **default** or **user**. If the latter is specified the values as given with the **origin** and **size** subcommands are used.

vertical and horizontal switches the orientation of the color gradient.

origin x, y and size x, y are used only in combination with the user option. The x and y values must be given in screen coordinates (as everything else did not seem to make sense) that is between [0 - 1]. Try for example:

```
set colorbox horiz user origin .1,.02 size .8,.04
```

which will draw a horizontal gradient somewhere at the bottom of the graph.

border turns the border on (this is the default). **noborder** turns the border off. If an positive integer argument is given after **border**, it is used as a line style tag which is used for drawing the border, e.g.:

```
set style line 2604 linetype -1 linewidth .4 set colorbox border 2604
```

will use line style **2604**, a thin line with the default border color (-1) for drawing the border. **bdefault** (which is the default) will use the default border line style for drawing the border of the color box.

The axis of the color box is called **cb** and it is controlled by means of the usual axes commands, i.e. **set/unset/show** with **cbrange**, [m]**cbtics**, **format cb**, **grid** [m]**cb**, **cblabel**, and perhaps even **cbdata**, [no]**cbdtics**, [no]**cbmtics**.

set colorbox without any parameter switches the position to default. unset colorbox resets the default parameters for the colorbox and switches the colorbox off.

See also help for set pm3d (p. 95), set palette (p. 97), x11 pm3d (p. 179), and set style line (p. 107).

40.12 Contour

set contour enables contour drawing for surfaces. This option is available for splot only.

Syntax:

```
set contour {base | surface | both}
unset contour
show contour
```

The three options specify where to draw the contours: **base** draws the contours on the grid base where the x/ytics are placed, **surface** draws the contours on the surfaces themselves, and **both** draws the contours on both the base and the surface. If no option is provided, the default is **base**.

See also **set cntrparam** (**p. 70**) for the parameters that affect the drawing of contours, and **set clabel** (**p. 70**) for control of labelling of the contours.

The surface can be switched off (see **set surface** (p. 115)), giving a contour-only graph. Though it is possible to use **set size** to enlarge the plot to fill the screen, more control over the output format can be obtained by writing the contour information to a file, and rereading it as a 2-d datafile plot:

```
unset surface
set contour
set cntrparam ...
set term table
set out 'filename'
splot ...
set out
# contour info now in filename
set term <whatever>
plot 'filename'
```

In order to draw contours, the data should be organized as "grid data". In such a file all the points for a single y-isoline are listed, then all the points for the next y-isoline, and so on. A single blank line (a line containing no characters other than blank spaces and a carriage return and/or a line feed) separates one y-isoline from the next. See also **splot datafile** (p. 129).

If contours are desired from non-grid data, **set dgrid3d** can be used to create an appropriate grid. See **set dgrid3d** (p. 76) for more information. See also

```
and
contours with user defined levels demo (discrete.dem).
```

40.13 Data style

This form of the command is deprecated. Please see set style data (p. 106).

40.14 Datafile

The **set datafile** command options control interpretation of fields read from input data files by the **plot**, **splot**, and **fit** commands. Three such options are currently implemented.

40.14.1 Set datafile missing

The **set datafile missing** command allows you to tell **gnuplot** what character string is used in a data file to denote missing data. Exactly how this missing value will be treated depends on the **using** specifier of the **plot** or **splot** command.

Syntax:

```
set datafile missing {"<string>"}
     show datafile missing
     unset datafile
Example:
     # Ignore entries containing IEEE NaN ("Not a Number") code
     set datafile missing "NaN"
Example:
     set datafile missing "?"
     set style data lines
     plot '-'
        1 10
        2 20
        3 ?
        4 40
        5 50
        е
     plot '-' using 1:2
        1 10
        2 20
        3 ?
        4 40
        5 50
        е
     plot '-' using 1:($2)
        1 10
        2 20
        3 ?
        4 40
        5 50
```

The first **plot** will recognize only the first datum in the "3?" line. It will use the single-datum-on-a-line convention that the line number is "x" and the datum is "y", so the point will be plotted (in this case erroneously) at (2,3).

The second **plot** will correctly ignore the middle line. The plotted line will connect the points at (2,20) and (4,40).

The third **plot** will also correctly ignore the middle line, but the plotted line will not connect the points at (2,20) and (4,40).

There is no default character for **missing**, but in many cases any non-parsible string of characters found where a numerical value is expected will be treated as missing data.

40.14.2 Set datafile separator

The command **set datafile separator** "**<char>**" tells **gnuplot** that data fields in subsequent input files are separated by **<char>** rather than by whitespace. The most common use is to read in csv (comma-separated value) files written by spreadsheet or database programs. By default data fields are separated by whitespace.

```
Syntax:
```

```
set datafile separator {"<char>" | whitespace}

Examples:
    # Input file contains tab-separated fields
    set datafile separator "\t"
    # Input file contains comma-separated values fields
    set datafile separator ","
```

40.14.3 Set datafile commentschars

The set datafile commentschars command allows you to tell gnuplot what characters are used in a data file to denote comments. Gruplot will ignore rest of the line behind the specified characters if either of them is the first non-blank character on the line.

```
Syntax:
```

```
set datafile commentschars {"<string>"}
show datafile commentschars
unset commentschars
```

Default value of the string is "#!" on VMS and "#" otherwise.

Then, the following line in a data file is completely ignored

```
# 1 2 3 4
but the following
   1 # 3 4
produces rather unexpected plot unless
   set datafile missing '#'
is specified as well.
Example:
```

Set datafile binary

set datafile commentschars "#!%"

The set datafile binary command is used to set the defaults when reading binary data files. The syntax matches precisely that used for commands plot and splot. See binary (p. 47) for details about
binary list>.

Syntax:

40.14.4

```
set datafile binary <br/> <br/> tinary list>
     show datafile binary
     show datafile
     unset datafile
Examples:
```

```
set datafile binary filetype=auto
set datafile binary array=512x512 format="%uchar"
```

40.15Decimalsign

The set decimalsign command selects a decimal sign for numbers printed into tic labels or set label strings.

Syntax:

```
set decimalsign {<value>}
unset decimalsign
show decimalsign
```

The argument <value> is the string to be used in place of the usual decimal point. Typical choices include the period, '.', and the comma, ',', but others may be useful, too. If you omit the <value> argument, the decimal separator is not modified from the usual default, which is a period. Unsetting decimalsign has the same effect as omitting <value>.

Example:

```
Correct typesetting in most European countries requires:
```

```
set decimalsign ','
```

40.16 Dgrid3d

The **set dgrid3d** command enables, and can set parameters for, non-grid to grid data mapping.

Syntax:

```
set dgrid3d {<row_size>} {,{<col_size>} {,<norm>}}
unset dgrid3d
show dgrid3d
```

By default **dgrid3d** is disabled. When enabled, 3-d data read from a file are always treated as a scattered data set. A grid with dimensions derived from a bounding box of the scattered data and size as specified by the row/col_size parameters is created for plotting and contouring. The grid is equally spaced in x (rows) and in y (columns); the z values are computed as weighted averages of the scattered points' z values.

The third parameter, norm, controls the weighting: Each data point is weighted inversely by its distance from the grid point raised to the norm power. (Actually, the weights are given by the inverse of dx^norm + dy^norm, where dx and dy are the components of the separation of the grid point from each data point. For some norms that are powers of two, specifically 4, 8, and 16, the computation is optimized by using the Euclidean distance in the weight calculation, (dx^2+dy^2)^norm/2. However, any non-negative integer can be used.)

The closer the data point is to a grid point, the more effect it has on that grid point and the larger the value of norm the less effect more distant data points have on that grid point.

The **dgrid3d** option is a simple low pass filter that converts scattered data to a grid data set. More sophisticated approaches to this problem exist and should be used to preprocess the data outside **gnuplot** if this simple solution is found inadequate.

(The z values are found by weighting all data points, not by interpolating between nearby data points; also edge effects may produce unexpected and/or undesired results. In some cases, small norm values produce a grid point reflecting the average of distant data points rather than a local average, while large values of norm may produce "steps" with several grid points having the same value as the closest data point, rather than making a smooth transition between adjacent data points. Some areas of a grid may be filled by extrapolation, to an arbitrary boundary condition. The variables are not normalized; consequently the units used for x and y will affect the relative weights of points in the x and y directions.)

Examples:

```
set dgrid3d 10,10,1  # defaults
set dgrid3d ,,4
```

The first specifies that a grid of size 10 by 10 is to be constructed using a norm value of 1 in the weight computation. The second only modifies the norm, changing it to 4. See also

```
scatter.dem: dgrid3d demo.
```

40.17 Dummy

The **set dummy** command changes the default dummy variable names.

Syntax:

```
set dummy {<dummy-var>} {,<dummy-var>}
show dummy
```

By default, **gnuplot** assumes that the independent, or "dummy", variable for the **plot** command is "t" if in parametric or polar mode, or "x" otherwise. Similarly the independent variables for the **splot** command are "u" and "v" in parametric mode (**splot** cannot be used in polar mode), or "x" and "y" otherwise.

It may be more convenient to call a dummy variable by a more physically meaningful or conventional name. For example, when plotting time functions:

```
set dummy t
plot sin(t), cos(t)
```

At least one dummy variable must be set on the command; **set dummy** by itself will generate an error message.

Examples:

```
set dummy u,v
set dummy ,s
```

The second example sets the second variable to s.

40.18 Encoding

The **set encoding** command selects a character encoding. Syntax:

```
set encoding {<value>}
show encoding
```

Valid values are

```
default
            - tells a terminal to use its default encoding
iso_8859_1 - the most common Western European font used by many
              Unix workstations and by MS-Windows. This encoding is
              known in the PostScript world as 'ISO-Latin1'.
iso_8859_2 - used in Central and Eastern Europe
iso_8859_15 - a variant of iso_8859_1 that includes the Euro symbol
koi8r
            - popular Unix cyrillic encoding
            - ukrainian Unix cyrillic encoding
koi8u
cp437
            - codepage for MS-DOS
            - codepage for OS/2, Western Europe
cp850
            - codepage for OS/2, Central and Eastern Europe
cp852
cp1250
            - codepage for MS Windows, Central and Eastern Europe
```

Generally you must set the encoding before setting the terminal type. Note that encoding is not supported by all terminal drivers and that the device must be able to produce the desired non-standard characters. The PostScript and X11 terminals support all encodings. OS/2 Presentation Manager switches automatically to codepage 912 for iso_8859_2.

40.19 Fit

The **fit** setting defines where the **fit** command writes its output. If this option was built into your version of gnuplot, it also controls whether parameter errors from the fit will be written into variables.

Syntax:

```
set fit {logfile {"<filename>"}} {{no}errorvariables}
unset fit
show fit
```

The <filename> argument must be enclosed in single or double quotes.

If no filename is given or **unset fit** is used the log file is reset to its default value "fit.log" or the value of the environmental variable **FIT_LOG**.

Users of DOS-like platforms should note that the \backslash character has special significance in double-quoted strings, so single-quotes should be used for filenames in different directories, or you have to write $\backslash \backslash$ for each \backslash . Or you can just use forward slashes, even though this is DOS.

If the given logfile name ends with a / or \, it is interpreted to be a directory name, and the actual filename will be "fit.log" in that directory.

If the **errorvariables** option is turned on, the error of each fitted parameter computed by **fit** will be copied to a user-defined variable whose name is formed by appending "_err" to the name of the parameter itself. This is useful mainly to put the parameter and its error onto a plot of the data and the fitted function, for reference, as in:

```
set fit errorvariables fit f(x) 'datafile' using 1:2 via a, b print "error of a is:", a_err set label 'a=\%6.2f', a, '+/- \%6.2f', a_err plot 'datafile' using 1:2, f(x)
```

40.20 Fontpath

The **fontpath** setting defines additional locations for font files searched when including font files. Currently only the postscript terminal supports **fontpath**. If a file cannot be found in the current directory, the directories in **fontpath** are tried. Further documentation concerning the supported file formats is included in the **terminal postscript** section of the documentation.

Syntax:

```
set fontpath {"pathlist1" {"pathlist2"...}}
show fontpath
```

Path names may be entered as single directory names, or as a list of path names separated by a platform-specific path separator, eg. colon (':') on Unix, semicolon (';') on DOS/Windows/OS/2/Amiga platforms. The **show fontpath**, **save** and **save set** commands replace the platform-specific separator with a space character ('') for maximum portability. If a directory name ends with an exclamation mark ('!') also the subdirectories of this directory are searched for font files.

If the environmental variable GNUPLOT_FONTPATH is set, its contents are appended to **fontpath**. If it is not set, a system dependent default value is used. It is set by testing several directories for existence when using the fontpath the first time. Thus, the first call of **set fontpath**, **show fontpath**, **save fontpath**, **plot**, or **splot** with embedded font files takes a little more time. If you want to save this time you may set the environmental variable GNUPLOT_FONTPATH since probing is switched off, then. You can find out which is the default fontpath by using **show fontpath**.

However, **show fontpath** prints the contents of user defined fontpath and system fontpath separately. Also, the **save** and **save set** commands save only the user specified parts of **fontpath**, for portability reasons.

Many other terminal drivers access TrueType fonts via the gd library. For these drivers the font search path is controlled by the environmental variable GDFONTPATH.

40.21 Format

The format of the tic-mark labels can be set with the **set format** command.

Syntax:

```
set format {<axes>} {"<format-string>"}
set format {<axes>} {'<format-string>'}
show format
```

where <axes> is either **x**, **y**, **z**, **cb**, **xy**, **x2**, **y2** or nothing (which is the same as **xy**). The length of the string representing a tic mark (after formatting with 'printf') is restricted to 100 characters. If the format string is omitted, the format will be returned to the default "% g". For LaTeX users, the format "\$%g\$" is often desirable. If the empty string "" is used, no label will be plotted with each tic, though the tic mark will still be plotted. To eliminate all tic marks, use **unset xtics** or **unset ytics**.

Newline (\n) is accepted in the format string. Use double-quotes rather than single-quotes to enable such interpretation. See also **syntax** (p. 33).

The default format for both axes is "% g", but other formats such as "%.2f" or "%3.0em" are often desirable. Anything accepted by 'printf' when given a double precision number, and accepted by the terminal, will work. Some other options have been added. If the format string looks like a floating point format, then **gnuplot** tries to construct a reasonable format.

Characters not preceded by "%" are printed verbatim. Thus you can include spaces and labels in your format string, such as "%g m", which will put " m" after each number. If you want "%" itself, double it: "%g %%".

See also set xtics (p. 123) for more information about tic labels, and set decimalsign (p. 75) for how to use non-default decimal separators in numbers printed this way. See also

```
electron demo (electron.dem).
```

40.21.1 Gprintf

The string function gprintf("format",x) uses gnuplot's own format specifiers, as do the gnuplot commands set format, set timestamp, and others. These format specifiers are not the same as those used by the standard C-language routine sprintf(). Gnuplot also provides an sprintf("format",x,...) routine if you prefer. For a list of gnuplot's format options, see format specifiers (p. 79).

40.21.2 Format specifiers

The acceptable formats (if not in time/date mode) are:

	Tic-mark label numerical format specifiers
Format	Explanation
%f	floating point notation
%e or %E	exponential notation; an "e" or "E" before the power
%g or %G	the shorter of $%e$ (or $%E$) and $%f$
%x or %X	hex
%o or %0	octal
%t	mantissa to base 10
%1	mantissa to base of current logscale
%s	mantissa to base of current logscale; scientific power
%Т	power to base 10
%L	power to base of current logscale
%S	scientific power
%с	character replacement for scientific power
%P	multiple of pi

A 'scientific' power is one such that the exponent is a multiple of three. Character replacement of scientific powers ("%c") has been implemented for powers in the range -18 to +18. For numbers outside of this range the format reverts to exponential.

Other acceptable modifiers (which come after the "%" but before the format specifier) are "-", which left-justifies the number; "+", which forces all numbers to be explicitly signed; " " (a space), which makes positive numbers have a space in front of them where negative numbers have "-"; "#", which places a decimal point after floats that have only zeroes following the decimal point; a positive integer, which defines the field width; "0" (the digit, not the letter) immediately preceding the field width, which indicates that leading zeroes are to be used instead of leading blanks; and a decimal point followed by a non-negative integer, which defines the precision (the minimum number of digits of an integer, or the number of digits following the decimal point of a float).

Some systems may not support all of these modifiers but may also support others; in case of doubt, check the appropriate documentation and then experiment.

Examples:

```
set format y "%t"; set ytics (5,10) # "5.0" and "1.0" set format y "%s"; set ytics (500,1000) # "500" and "1.0" set format y "+-12.3f"; set ytics(12345) # "+12345.000 " set format y "%.2t*10^%+03T"; set ytic(12345)# "1.23*10^+04" set format y "%s*10^{{%S}}"; set ytic(12345) # "12.345*10^{{3}}" set format y "%s %cg"; set ytic(12345) # "12.345 kg"
```

```
set format y "%.0P pi"; set ytic(6.283185) # "2 pi"
set format y "%.0f%%"; set ytic(50) # "50%"

set log y 2; set format y '%l'; set ytics (1,2,3)
#displays "1.0", "1.0" and "1.5" (since 3 is 1.5 * 2^1)
```

There are some problem cases that arise when numbers like 9.999 are printed with a format that requires both rounding and a power.

If the data type for the axis is time/date, the format string must contain valid codes for the 'strftime' function (outside of **gnuplot**, type "man strftime"). See **set timefmt** (**p. 117**) for a list of the allowed input format codes.

40.21.3 Time/date specifiers

In time/date mode, the acceptable formats are:

Tic-mark label Date/Time Format Specifiers		
Format	Explanation	
%a	abbreviated name of day of the week	
%A	full name of day of the week	
%b or %h	abbreviated name of the month	
% B	full name of the month	
%d	day of the month, 1–31	
%D	shorthand for "%m/%d/%y"	
%k	hour, 0–23 (one or two digits)	
%Н	hour, 00–23 (always two digits)	
%1	hour, 1–12 (one or two digits)	
%I	hour, 01–12 (always two digits)	
%j	day of the year, 1–366	
%m	month, 1–12	
%M	minute, 0–60	
%p	"am" or "pm"	
%r	shorthand for "%I:%M:%S %p"	
%R	shorthand for %H:%M"	
%S	second, $0-60$	
%Т	shorthand for "%H:%M:%S"	
%U	week of the year (week starts on Sunday)	
%w	day of the week, $0-6$ (Sunday = 0)	
%W	week of the year (week starts on Monday)	
%у	year, 0-99	
%Y	year, 4-digit	

Except for the non-numerical formats, these may be preceded by a "0" ("zero", not "oh") to pad the field length with leading zeroes, and a positive digit, to define the minimum field width (which will be overridden if the specified width is not large enough to contain the number). There is a 24-character limit to the length of the printed text; longer strings will be truncated.

Examples:

Suppose the text is "76/12/25 23:11:11". Then

Suppose the text is "98/07/06~05:04:03". Then

```
set format x "%1y/%2m/%3d %01H:%02M:%03S" # "98/ 7/ 6 5:04:003"
```

40.22 Function style

This form of the command is deprecated. Please see set style function (p. 106).

40.23 Functions

The **show functions** command lists all user-defined functions and their definitions.

Syntax:

```
show functions
```

For information about the definition and usage of functions in **gnuplot**, please see **expressions** (p. 22). See also

```
splines as user defined functions (spline.dem)
and
use of functions and complex variables for airfoils (airfoil.dem).
```

40.24 Grid

The **set grid** command allows grid lines to be drawn on the plot.

Syntax:

The grid can be enabled and disabled for the major and/or minor tic marks on any axis, and the linetype and linewidth can be specified for major and minor grid lines, also via a predefined linestyle, as far as the active terminal driver supports this.

Additionally, a polar grid can be selected for 2-d plots — circles are drawn to intersect the selected tics, and radial lines are drawn at definable intervals. (The interval is given in degrees or radians, depending on the **set angles** setting.) Note that a polar grid is no longer automatically generated in polar mode.

The pertinent tics must be enabled before **set grid** can draw them; **gnuplot** will quietly ignore instructions to draw grid lines at non-existent tics, but they will appear if the tics are subsequently enabled.

If no linetype is specified for the minor gridlines, the same linetype as the major gridlines is used. The default polar angle is 30 degrees.

If **front** is given, the grid is drawn on top of the graphed data. If **back** is given, the grid is drawn underneath the graphed data. Using **front** will prevent the grid from being obscured by dense data. The default setup, **layerdefault**, is equivalent to **back** for 2d plots. In 3D plots the default is to split up the grid and the graph box into two layers: one behind, the other in front of the plotted data and functions. Since **hidden3d** mode does its own sorting, it ignores all grid drawing order options and passes the grid lines through the hidden line removal machinery instead. These options actually affect not only the grid, but also the lines output by **set border** and the various ticmarks (see **set xtics** (p. 123)).

Z grid lines are drawn on the bottom of the plot. This looks better if a partial box is drawn around the plot — see set border (p. 68).

40.25 Hidden3d

The **set hidden3d** command enables hidden line removal for surface plotting (see **splot** (p. 129)). Some optional features of the underlying algorithm can also be controlled using this command.

Syntax:

In contrast to the usual display in gnuplot, hidden line removal actually treats the given function or data grids as real surfaces that can't be seen through, so parts behind the surface will be hidden by it. For this to be possible, the surface needs to have 'grid structure' (see **splot datafile** (**p. 129**) about this), and it has to be drawn **with lines** or **with linespoints**.

When **hidden3d** is set, both the hidden portion of the surface and possibly its contours drawn on the base (see **set contour (p. 73)**) as well as the grid will be hidden. Each surface has its hidden parts removed with respect to itself and to other surfaces, if more than one surface is plotted. Contours drawn on the surface (**set contour surface**) don't work. Labels and arrows are always visible and are unaffected. The key is also never hidden by the surface.

Functions are evaluated at isoline intersections. The algorithm interpolates linearly between function points or data points when determining the visible line segments. This means that the appearance of a function may be different when plotted with **hidden3d** than when plotted with **nohidden3d** because in the latter case functions are evaluated at each sample. Please see **set samples** (**p. 104**) and **set isosamples** (**p. 83**) for discussion of the difference.

The algorithm used to remove the hidden parts of the surfaces has some additional features controllable by this command. Specifying **defaults** will set them all to their default settings, as detailed below. If **defaults** is not given, only explicitly specified options will be influenced: all others will keep their previous values, so you can turn on/off hidden line removal via **set** {no}hidden3d, without modifying the set of options you chose.

The first option, **offset**, influences the linestyle used for lines on the 'back' side. Normally, they are drawn in a linestyle one index number higher than the one used for the front, to make the two sides of the surface distinguishable. You can specify a different line style offset to add instead of the default 1, by **offset** < **offset**>. Option **nooffset** stands for **offset** 0, making the two sides of the surface use the same linestyle.

Next comes the option **trianglepattern** < **bitpattern**>. < bitpattern> must be a number between 0 and 7, interpreted as a bit pattern. Each bit determines the visibility of one edge of the triangles each surface is split up into. Bit 0 is for the 'horizontal' edges of the grid, Bit 1 for the 'vertical' ones, and Bit 2 for the diagonals that split each cell of the original grid into two triangles. The default pattern is 3, making all horizontal and vertical lines visible, but not the diagonals. You may want to choose 7 to see those diagonals as well.

The **undefined** <**level**> option lets you decide what the algorithm is to do with data points that are undefined (missing data, or undefined function values), or exceed the given x-, y- or z-ranges. Such points can either be plotted nevertheless, or taken out of the input data set. All surface elements touching a point that is taken out will be taken out as well, thus creating a hole in the surface. If <level> = 3, equivalent to option **noundefined**, no points will be thrown away at all. This may produce all kinds of problems elsewhere, so you should avoid this. <level> = 2 will throw away undefined points, but keep the out-of-range ones. <level> = 1, the default, will get rid of out-of-range points as well.

By specifying **noaltdiagonal**, you can override the default handling of a special case can occur if **undefined** is active (i.e. <level> is not 3). Each cell of the grid-structured input surface will be divided in two triangles along one of its diagonals. Normally, all these diagonals have the same orientation relative to the grid. If exactly one of the four cell corners is excluded by the **undefined** handler, and this is

on the usual diagonal, both triangles will be excluded. However if the default setting of **altdiagonal** is active, the other diagonal will be chosen for this cell instead, minimizing the size of the hole in the surface.

The **bentover** option controls what happens to another special case, this time in conjunction with the **trianglepattern**. For rather crumply surfaces, it can happen that the two triangles a surface cell is divided into are seen from opposite sides (i.e. the original quadrangle is 'bent over'), as illustrated in the following ASCII art:

If the diagonal edges of the surface cells aren't generally made visible by bit 2 of the
bitpattern> there, the edge CB above wouldn't be drawn at all, normally, making the resulting display hard to understand. Therefore, the default option of **bentover** will turn it visible in this case. If you don't want that, you may choose **nobentover** instead. See also

```
hidden line removal demo (hidden.dem) and complex hidden line demo (singulr.dem).
```

40.26 Historysize

Note: the command set historysize is only available when compiled with the gnu readline.

Syntax:

```
set historysize <int>
unset historysize
```

When leaving gnuplot, the value of historysize is used for truncating the history to at most that much lines. The default is 500. **unset historysize** will disable history truncation and thus allow an infinite number of lines to be written to the history file.

40.27 Isosamples

The isoline density (grid) for plotting functions as surfaces may be changed by the **set isosamples** command.

Syntax:

```
set isosamples <iso_1> {,<iso_2>}
show isosamples
```

Each function surface plot will have <iso_1> iso-u lines and <iso_2> iso-v lines. If you only specify <iso_1>, <iso_2> will be set to the same value as <iso_1>. By default, sampling is set to 10 isolines per u or v axis. A higher sampling rate will produce more accurate plots, but will take longer. These parameters have no effect on data file plotting.

An isoline is a curve parameterized by one of the surface parameters while the other surface parameter is fixed. Isolines provide a simple means to display a surface. By fixing the u parameter of surface s(u,v), the iso-u lines of the form c(v) = s(u0,v) are produced, and by fixing the v parameter, the iso-v lines of the form c(u) = s(u,v0) are produced.

When a function surface plot is being done without the removal of hidden lines, **set samples** controls the number of points sampled along each isoline; see **set samples** (**p. 104**) and **set hidden3d** (**p. 82**). The contour algorithm assumes that a function sample occurs at each isoline intersection, so change in **samples** as well as **isosamples** may be desired when changing the resolution of a function surface/contour.

40.28 Key

The **set key** enables a key (or legend) describing plots on a plot.

The contents of the key, i.e., the names given to each plotted data set and function and samples of the lines and/or symbols used to represent them, are determined by the **title** and **with** options of the {s}plot command. Please see plot title (p. 59) and plot with (p. 59) for more information.

Syntax:

By default the key is placed in the upper right corner of the graph. The keywords **left**, **right**, **top**, **bottom**, **outside** and **below** may be used to place the key in the other corners inside the graph or to the right (outside) or below the graph. They may be given alone or combined.

Plots may be drawn with no visible key by requesting set key off or unset key.

Justification of the labels within the key is controlled by **Left** or **Right** (default is **Right**). The text and sample can be reversed (**reverse**) and a box can be drawn around the key (**box** {...}) in a specified **linetype** and **linewidth**, or a user-defined **linestyle**. Note that not all terminal drivers support linewidth selection, though.

By default the first plot label is at the top of the key and successive labels are entered below it. The **invert** option causes the first label to be placed at the bottom of the key, with successive labels entered above it. This option is useful to force the vertical ordering of labels in the key to match the order of box types in a stacked histogram.

The length of the sample line can be controlled by **samplen**. The sample length is computed as the sum of the tic length and <sample_length> times the character width. **samplen** also affects the positions of point samples in the key since these are drawn at the midpoint of the sample line, even if the sample line itself is not drawn.

The vertical spacing between lines is controlled by **spacing**. The spacing is set equal to the product of the pointsize, the vertical tic size, and <vertical spacing>. The program will guarantee that the vertical spacing is no smaller than the character height.

The <width_increment> is a number of character widths to be added to or subtracted from the length of the string. This is useful only when you are putting a box around the key and you are using control characters in the text. **gnuplot** simply counts the number of characters in the string when computing the box width; this allows you to correct it.

The <height_increment> is a number of character heights to be added to or subtracted from the height of the key box. This is useful mainly when you are putting a box around the key, otherwise it can be used to adjust the vertical shift of automatically chosen key position by <height_increment>/2.

All plotted curves of **plots** and **splots** are titled according to the default option **autotitles**. The automatic generation of titles can be suppressed by **noautotitles**; then only those titles explicitly defined by (s)plot ... title ... will be drawn.

The set key autotitle columnheader option is available if gnuplot was built with –enable-datastrings. This command causes the first entry in each column of plotted data to be interpreted as a text string and used as a title for the corresponding plot. If the quantity being plotted is a function of data from several

columns, gnuplot may be confused as to which column to draw the title from. In this case it is necessary to specify the column explicitly in the plot command, e.g. plot "datafile" using ((\$2+\$3)/\$4) title 3 with lines.

A title can be put on the key (title "<text>") — see also syntax (p. 33) for the distinction between text in single- or double-quotes. The key title uses the same justification as do the plot titles.

An explicitly given title is typeset using enhanced text properties on terminals supporting this, see enhanced text (p. 163) for more details. This default behavior can be switched off by the noenhanced option.

The defaults for set key are on, right, top, Right, noreverse, noinvert, samplen 4, spacing 1.25, title "", and nobox. The default linetype> is the same as that used for the plot borders. Entering set key default returns the key to its default configuration.

The <position> can be a simple x,y,z as in previous versions, but these can be preceded by one of five keywords (first, second, graph, screen, character) which selects the coordinate system in which the position of the first sample line is specified. See coordinates (p. 20) for more details.

The key is drawn as a sequence of lines, with one plot described on each line. On the right-hand side (or the left-hand side, if **reverse** is selected) of each line is a representation that attempts to mimic the way the curve is plotted. On the other side of each line is the text description (the line title), obtained from the **plot** command. The lines are vertically arranged so that an imaginary straight line divides the left- and right-hand sides of the key. It is the coordinates of the top of this line that are specified with the **set key** command. In a **plot**, only the x and y coordinates are used to specify the line position. For a **splot**, x, y and z are all used as a 3-d location mapped using the same mapping as the graph itself to form the required 2-d screen position of the imaginary line.

Some or all of the key may be outside of the graph boundary, although this may interfere with other labels and may cause an error on some devices. If you use the keywords **outside** or **below**, **gnuplot** makes space for the keys and the graph becomes smaller. Putting keys outside to the right, they occupy as few columns as possible, and putting them below, as many columns as possible (depending of the length of the labels), thus stealing as little space from the graph as possible.

When using the TeX or PostScript drivers, or similar drivers where formatting information is embedded in the string, **gnuplot** is unable to calculate correctly the width of the string for key positioning. If the key is to be positioned at the left, it may be convenient to use the combination **set key left Left reverse**. The box and gap in the grid will be the width of the literal string.

If **splot** is being used to draw contours, the contour labels will be listed in the key. If the alignment of these labels is poor or a different number of decimal places is desired, the label format can be specified. See **set clabel** (**p. 70**) for details.

Examples:

This places the key at the default location:

set key default

This disables the key:

unset key

This places a key at coordinates 2,3.5,2 in the default (first) coordinate system:

set key 2,3.5,2

This places the key below the graph:

set key below

This places the key in the bottom left corner, left-justifies the text, gives it a title, and draws a box around it in linetype 3:

set key left bottom Left title 'Legend' box 3

40.29 Label

Arbitrary labels can be placed on the plot using the **set label** command.

Syntax:

The <position> is specified by either x,y or x,y,z, and may be preceded by first, second, graph, screen, or character to select the coordinate system. See coordinates (p. 20) for details.

The tag is an integer that is used to identify the label. If no <tag> is given, the lowest unused tag value is assigned automatically. The tag can be used to delete or modify a specific label. To change any attribute of an existing label, use the **set label** command with the appropriate tag, and specify the parts of the label to be changed.

The <label text> can be a string constant, a string variable, or a string-valued expression. See **strings** (p. 31), **sprintf** (p. 23), and **gprintf** (p. 79).

By default, the text is placed flush left against the point x,y,z. To adjust the way the label is positioned with respect to the point x,y,z, add the justification parameter, which may be **left**, **right** or **center**, indicating that the point is to be at the left, right or center of the text. Labels outside the plotted boundaries are permitted but may interfere with axis labels or other text.

If **rotate** is given, the label is written vertically (if the terminal can do so, of course). If **rotate** by **degrees** is given, conforming terminals will try to write the text at the specified angle; non-conforming terminals will treat this as vertical text.

Font and its size can be chosen explicitly by **font** "<**name**>{,<**size**>}" if the terminal supports font settings. Otherwise the default font of the terminal will be used.

If **front** is given, the label is written on top of the graphed data. If **back** is given (the default), the label is written underneath the graphed data. Using **front** will prevent a label from being obscured by dense data.

Textcolor <**colorspec**> changes the color of the label text. <**colorspec**> is either a linetype or a mapping onto the pm3d color palette (available only in **splot**), see help for **set palette** (**p. 97**).

```
'textcolor' may be abbreviated 'tc'.
'tc default' resets the text color to its default state.
'tc lt <n>' sets the text color to that of line type <n>.
'tc ls <n>' sets the text color to that of line style <n>.
'tc palette z' selects a palette color corresponding to the label z position.
'tc palette cb <val>' selects a color corresponding to <val> on the colorbar.
'tc palette fraction <val>', with 0<=val<=1, selects a color corresponding to the mapping [0:1] to grays/colors of the 'palette'.</pre>
```

If a <pointstyle> is given, using keywords lt, pt and ps, see style (p. 59), a point with the given style and color of the given line type is plotted at the label position and the text of the label is displaced slightly. This option is used by default for placing labels in mouse enhanced terminals. Use nopoint to turn off the drawing of a point near the label (this is the default).

The displacement defaults to 1,1 in **pointsize** units if a <pointstyle> is given, 0,0 if no <pointstyle> is given. The displacement can be controlled by the optional **offset** <**offset**> where <**offset**> is specified by either x,y or x,y,z, and may be preceded by **first**, **second**, **graph**, **screen**, or **character** to select the coordinate system. See **coordinates** (**p. 20**) for details.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string according to the **timefmt** format string. See **set xdata** (**p. 120**) and **set timefmt** (**p. 117**).

The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.

Examples:

```
To set a label at (1,2) to "y=x", use:
set label "y=x" at 1,2
```

To set a Sigma of size 24, from the Symbol font set, at the center of the graph, use:

```
set label "S" at graph 0.5,0.5 center font "Symbol,24"
```

To set a label " $y=x^2$ " with the right of the text at (2,3,4), and tag the label as number 3, use:

```
set label 3 "y=x^2" at 2,3,4 right
```

To change the preceding label to center justification, use:

```
set label 3 center
```

To delete label number 2, use:

```
unset label 2
```

To delete all labels, use:

```
unset label
```

To show all labels (in tag order), use:

```
show label
```

To set a label on a graph with a timeseries on the x axis, use, for example:

```
set timefmt "%d/%m/%y,%H:%M" set label "Harvest" at "25/8/93",1
```

To display a freshly fitted parameter on the plot with the data and the fitted function, do this after the fit, but before the plot:

```
set label sprintf("a = %3.5g",par_a) at 30,15
bfit = gprintf("b = %s*10^%S",par_b)
set label bfit at 30,20
```

To set a label displaced a little bit from a small point:

```
set label 'origin' at 0,0 point lt 1 pt 2 ps 3 offset 1,-1
```

To set a label whose color matches the z value (in this case 5.5) of some point on a 3D splot colored using pm3d:

```
set label 'text' at 0,0,5.5 tc palette z
```

40.30 Lmargin

The command set Imargin sets the size of the left margin. Please see set margin (p. 89) for details.

40.31 Loadpath

The **loadpath** setting defines additional locations for data and command files searched by the **call**, **load**, **plot** and **splot** commands. If a file cannot be found in the current directory, the directories in **loadpath** are tried.

Syntax:

```
set loadpath {"pathlist1" {"pathlist2"...}}
show loadpath
```

Path names may be entered as single directory names, or as a list of path names separated by a platform-specific path separator, eg. colon (':') on Unix, semicolon (';') on DOS/Windows/OS/2/Amiga platforms. The **show loadpath**, **save** and **save set** commands replace the platform-specific separator with a space character (' ') for maximum portability.

If the environment variable GNUPLOT_LIB is set, its contents are appended to **loadpath**. However, **show loadpath** prints the contents of user defined loadpath and system loadpath separately. Also, the **save and save set** commands save only the user specified parts of **loadpath**, for portability reasons.

40.32 Locale

The locale setting determines the language with which $\{x,y,z\}\{d,m\}$ tics will write the days and months.

Syntax:

```
set locale {"<locale>"}
```

<locale> may be any language designation acceptable to your installation. See your system documentation for the available options. The default value is determined from the LANG environment variable.

40.33 Logscale

Log scaling may be set on the x, y, z, x2 and/or y2 axes.

Syntax:

```
set logscale <axes> <base>
unset logscale <axes>
show logscale
```

where <axes> may be any combinations of \mathbf{x} , \mathbf{y} , \mathbf{z} , and \mathbf{cb} in any order, or $\mathbf{x2}$ or $\mathbf{y2}$ and where <base> is the base of the log scaling. If <base> is not given, then 10 is assumed. If <axes> is not given, then all axes are assumed. **unset logscale** turns off log scaling for the specified axes.

Examples:

To enable log scaling in both x and z axes:

```
set logscale xz
```

To enable scaling log base 2 of the y axis:

```
set logscale y 2
```

To enable z and color log axes for a pm3d plot:

```
set logscale zcb
```

To disable z axis log scaling:

```
unset logscale z
```

40.34 Macros

If command line macro substitution is enabled, then tokens in the command line of the form @<stringvariablename> will be replaced by the text string contained in <stringvariablename>. See substitution (p. 31).

Syntax:

set macros

40.35 Mapping

If data are provided to **splot** in spherical or cylindrical coordinates, the **set mapping** command should be used to instruct **gnuplot** how to interpret them.

Syntax:

```
set mapping {cartesian | spherical | cylindrical}
```

A cartesian coordinate system is used by default.

For a spherical coordinate system, the data occupy two or three columns (or **using** entries). The first two are interpreted as the azimuthal and polar angles theta and phi (or "longitude" and "latitude"), in the units specified by **set angles**. The radius r is taken from the third column if there is one, or is set to unity if there is no third column. The mapping is:

```
x = r * cos(theta) * cos(phi)
y = r * sin(theta) * cos(phi)
z = r * sin(phi)
```

Note that this is a "geographic" spherical system, rather than a "polar" one (that is, phi is measured from the equator, rather than the pole).

For a cylindrical coordinate system, the data again occupy two or three columns. The first two are interpreted as theta (in the units specified by **set angles**) and z. The radius is either taken from the third column or set to unity, as in the spherical case. The mapping is:

```
x = r * cos(theta)
y = r * sin(theta)
z = z
```

The effects of **mapping** can be duplicated with the **using** filter on the **splot** command, but **mapping** may be more convenient if many data files are to be processed. However even if **mapping** is used, **using** may still be necessary if the data in the file are not in the required order.

mapping has no effect on plot.

```
world.dem: mapping demos.
```

40.36 Margin

The computed margins can be overridden by the **set margin** commands. **show margin** shows the current settings.

Syntax:

```
set bmargin {<margin>}
set lmargin {<margin>}
set rmargin {<margin>}
set tmargin {<margin>}
show margin
```

The units of <margin> are character heights or widths, as appropriate. A positive value defines the absolute size of the margin. A negative value (or none) causes **gnuplot** to revert to the computed value. For 3D plots, only the left margin setting has any effect so far.

Normally the margins of a plot are automatically calculated based on tics, tic labels, axis labels, the plot title, the timestamp and the size of the key if it is outside the borders. If, however, tics are attached to the axes (**set xtics axis**, for example), neither the tics themselves nor their labels will be included in either the margin calculation or the calculation of the positions of other text to be written in the margin. This can lead to tic labels overwriting other text if the axis is very close to the border.

40.37 Mouse

The command **set mouse** enables mouse actions. Currently the pm, x11, ggi and windows terminals are mouse enhanced. There are two mouse modes. The 2d-graph mode works for 2d graphs and for maps (i.e. splots with **set view** having z-rotation 0, 90, 180, 270 or 360 degrees, including **set view map**) and it allows tracing the position over graph, zooming, annotating graph etc. For 3d graphs **splot**, the view and scaling of the graph can be changed with mouse buttons 1 and 2. If additionally to these buttons the modifier <ctrl> is hold down, the coordinate system only is rotated which is useful for large data sets. A vertical motion of Button 2 with the shift key hold down changes the **ticslevel**.

Mousing is not available in multiplot mode. When multiplot is finished using **unset multiplot**, then the mouse will be turned on again and acts on the last plot (like replot does).

Syntax:

```
[[no]polardistance] \
     [format <string>] \
     [clipboardformat <int>/<string>] \
     [mouseformat <int>/<string>] \
     [[no]labels] [labeloptions <string>] \
     [[no]zoomjump] [[no]verbose]
unset mouse
```

The doubleclick resolution is given in milliseconds and used for Button 1 which copies the current mouse position to the **clipboard**. If you want that to be done by single clicking a value of 0 ms can be used. The default value is 300 ms.

The option **zoomcoordinates** determines if the coordinates of the zoom box are drawn at the edges while zooming. This is on by default.

The option **polardistance** determines if the distance to the ruler is also shown in polar coordinates. This corresponds to the default key binding '5'.

The **format** option takes a fprintf like format string which determines how floating point numbers are printed to the drivers window and the clipboard. The default is "% #g".

clipboardformat and mouseformat are used for formatting the text on Button1 and Button2 actions – copying the coordinates to the clipboard and temporarily annotating the mouse position. This corresponds to the key bindings '1', '2', '3', '4' (see the drivers's help window). If the argument is a string this string is used as c format specifier and should contain two float specifiers, e.g. set mouse mouseformat "mouse = %5.2g, %10.2f". Use set mouse mouseformat "" to turn this string off again.

The following formats are available (format 6 may only be selected if the format string was specified already):

```
real coordinates in brackets e.g. [1.23, 2.45]
   real coordinates w/o brackets e.g. 1.23, 2.45
1
                                        [(as set by 'set timefmt'), 2.45]
2
   x == timefmt
                                        [31. 12. 1999, 2.45]
3
   x == date
4
   x == time
                                        [23:59, 2.45]
   x == date / time
5
                                        [31. 12. 1999 23:59, 2.45]
    alt. format, specified as string
```

Choose the option labels to get real gnuplot labels on Button 2. (The default is **nolabels** which makes Button 2 drawing only temporary annotations at the mouse positions). The labels are drawn with the current setting of **mouseformat**. labeloptions controls which options are passed to the **set label** command. The default is "pointstyle 1" which will plot a small plus at the label position. Note that the pointsize is taken from the **set pointsize** command. Labels can be removed by holding the Ctrl-Key down while clicking with Button 2 on the label's point. The threshold for how close you must be to the label is also determined by the **pointsize**.

If the option **zoomjump** is on, the mouse pointer will be automatically offset a small distance after starting a zoom region with button 3. This can be useful to avoid a tiny (or even empty) zoom region. **zoomjump** is off by default.

If the option **verbose** is turned on the communication commands are shown during execution. This option can also be toggled by hitting **6** in the driver's window. **verbose** is off by default.

Press 'h' in the driver's window for a short summary of the mouse and key bindings. This will also display user defined bindings or **hotkeys** which can be defined using the **bind** command, see help for **bind** (**p. 29**). Note, that user defined **hotkeys** may override the default bindings.

Press 'q' in the driver's window to close the window. This key cannot be overridden with the **bind** command.

See also help for bind (p. 29) and label (p. 85).

40.37.1 X11 mouse

X11 mouse support is turned on by default if standard input comes from a terminal (tty). Mouse support is turned off if standard input does not come from a tty, e.g. a pipe. If you want to use mouse support while writing to gnuplot from a pipe, the mouse must be turned on *before* starting the x11 driver, e.g. immediately after startup with the explicit command **set mouse**. Beware: on some UNIX flavours, special input devices as /dev/null might not be **select-able**; turning on the mouse when using such devices will hang gnuplot.

If multiple X11 plot windows have been opened using the **set term x11** <**n**> terminal option, then only the current plot window supports the entire range of mouse commands and hotkeys. The other windows will, however, continue to display mouse coordinates at the lower left.

40.38 Multiplot

The command **set multiplot** places **gnuplot** in the multiplot mode, in which several plots are placed on the same page, window, or screen.

Syntax:

For some terminals, no plot is displayed until the command **unset multiplot** is given, which causes the entire page to be drawn and then returns gnuplot to its normal single-plot mode. For other terminals, each separate **plot** command produces a plot, but the screen may not be cleared between plots.

Any labels or arrows that have been defined will be drawn for each plot according to the current size and origin (unless their coordinates are defined in the **screen** system). Just about everything else that can be **set** is applied to each plot, too. If you want something to appear only once on the page, for instance a single time stamp, you'll need to put a **set time/unset time** pair around one of the **plot**, **splot** or **replot** commands within the **set multiplot/unset multiplot** block.

The commands **set origin** and **set size** must be used to correctly position each plot if no **layout** is specified or if fine tuning is desired. See **set origin** (p. 93) and **set size** (p. 104) for details of their usage.

Example:

```
set size 0.7,0.7

set origin 0.1,0.1

set multiplot

set size 0.4,0.4

set origin 0.1,0.1

plot sin(x)

set size 0.2,0.2

set origin 0.5,0.5

plot cos(x)

unset multiplot
```

displays a plot of $\cos(x)$ stacked above a plot of $\sin(x)$. Note the initial **set size** and **set origin**. While these are not always required, their inclusion is recommended. Some terminal drivers require that bounding box information be available before any plots can be made, and the form given above guarantees that the bounding box will include the entire plot array rather than just the bounding box of the first plot.

set size and set origin refer to the entire plotting area used for each plot. If you want to have the axes themselves line up, you can guarantee that the margins are the same size with the set margin commands. See set margin (p. 89) for their use. Note that the margin settings are absolute, in

character units, so the appearance of the graph in the remaining space will depend on the screen size of the display device, e.g., perhaps quite different on a video display and a printer.

With the **layout** option you can generate simple multiplots without having to give the **set size** and **set origin** commands before each plot: Those are generated automatically, but can be overridden at any time. With **layout** the display will be divided by a grid with <rows> rows and <cols> columns. This grid is filled rows first or columns first depending on whether the corresponding option is given in the multiplot command. The stack of plots can grow **downwards** or **upwards**. Default is **rowsfirst** and **downwards**.

Each plot can be scaled by **scale** and shifted with **offset**; if the y-values for scale or offset are omitted, the x-value will be used. **unset multiplot** will turn off the automatic layout and restore the values of **set size** and **set origin** as they were before **set multiplot layout**.

Example:

```
set size 1,1
set origin 0,0
set multiplot layout 3,2 columnsfirst scale 1.1,0.9
[ up to 6 plot commands here ]
unset multiplot
```

The above example will produce 6 plots in 2 columns filled top to bottom, left to right. Each plot will have a horizontal size of 1.1/2 and a vertical size of 0.9/3.

See also

```
multiplot demo (multiplt.dem)
```

40.39 Mx2tics

Minor tic marks along the x2 (top) axis are controlled by set mx2tics. Please see set mxtics (p. 92).

40.40 Mxtics

Minor tic marks along the x axis are controlled by **set mxtics**. They can be turned off with **unset mxtics**. Similar commands control minor tics along the other axes.

Syntax:

```
set mxtics {<freq> | default}
unset mxtics
show mxtics
```

The same syntax applies to mytics, mztics, mx2tics, my2tics and mcbtics.

<freq> is the number of sub-intervals (NOT the number of minor tics) between major tics (the default for a linear axis is either two or five depending on the major tics, so there are one or four minor tics between major tics). Selecting **default** will return the number of minor ticks to its default value.

If the axis is logarithmic, the number of sub-intervals will be set to a reasonable number by default (based upon the length of a decade). This will be overridden if <freq> is given. However the usual minor tics (2, 3, ..., 8, 9 between 1 and 10, for example) are obtained by setting <freq> to 10, even though there are but nine sub-intervals.

Minor tics can be used only with uniformly spaced major tics. Since major tics can be placed arbitrarily by $\mathbf{set} \{\mathbf{x} | \mathbf{x2} | \mathbf{y} | \mathbf{y2} | \mathbf{z} \} \mathbf{tics}$, minor tics cannot be used if major tics are explicitly \mathbf{set} .

By default, minor tics are off for linear axes and on for logarithmic axes. They inherit the settings for axis|border and {no}mirror specified for the major tics. Please see set xtics (p. 123) for information about these.

40.41 My2tics

Minor tic marks along the y2 (right-hand) axis are controlled by **set my2tics**. Please see **set mxtics** (p. 92).

40.42 Mytics

Minor tic marks along the y axis are controlled by set mytics. Please see set mxtics (p. 92).

40.43 Mztics

Minor tic marks along the z axis are controlled by set mztics. Please see set mxtics (p. 92).

40.44 Offsets

Offsets provide a mechanism to put a boundary around the data inside of an autoscaled graph.

Syntax:

```
set offsets <left>, <right>, <top>, <bottom>
unset offsets
show offsets
```

Each offset may be a constant or an expression. Each defaults to 0. Left and right offsets are given in units of the x axis, top and bottom offsets in units of the y axis. A positive offset expands the graph in the specified direction, e.g., a positive bottom offset makes ymin more negative. Negative offsets, while permitted, can have unexpected interactions with autoscaling and clipping.

Offsets are ignored in **splots**.

Example:

```
set offsets 0, 0, 2, 2 plot sin(x)
```

This graph of $\sin(x)$ will have a y range [-3:3] because the function will be autoscaled to [-1:1] and the vertical offsets are each two.

40.45 Origin

The **set origin** command is used to specify the origin of a plotting surface (i.e., the graph and its margins) on the screen. The coordinates are given in the **screen** coordinate system (see **coordinates** (**p. 20**) for information about this system).

Syntax:

```
set origin <x-origin>,<y-origin>
```

40.46 Output

By default, screens are displayed to the standard output. The **set output** command redirects the display to the specified file or device.

Syntax:

```
set output {"<filename>"}
show output
```

The filename must be enclosed in quotes. If the filename is omitted, any output file opened by a previous invocation of **set output** will be closed and new output will be sent to STDOUT. (If you give

the command **set output** "**STDOUT**", your output may be sent to a file named "STDOUT"! ["May be", not "will be", because some terminals, like **x11**, ignore **set output**.])

MSDOS users should note that the \ character has special significance in double-quoted strings, so single-quotes should be used for filenames in different directories.

When both **set terminal** and **set output** are used together, it is safest to give **set terminal** first, because some terminals set a flag which is needed in some operating systems. This would be the case, for example, if the operating system needs to know whether or not a file is to be formatted in order to open it properly.

On machines with popen functions (Unix), output can be piped through a shell command if the first non-whitespace character of the filename is '|'. For instance,

```
set output "|lpr -Plaser filename"
set output "|lp -dlaser filename"
```

On MSDOS machines, **set output** "**PRN**" will direct the output to the default printer. On VMS, output can be sent directly to any spooled device. It is also possible to send the output to DECnet transparent tasks, which allows some flexibility.

40.47 Parametric

The **set parametric** command changes the meaning of **plot** (**splot**) from normal functions to parametric functions. The command **unset parametric** restores the plotting style to normal, single-valued expression plotting.

Syntax:

```
set parametric unset parametric show parametric
```

For 2-d plotting, a parametric function is determined by a pair of parametric functions operating on a parameter. An example of a 2-d parametric function would be **plot** sin(t),cos(t), which draws a circle (if the aspect ratio is set correctly — see **set** size (p. 104)). **gnuplot** will display an error message if both functions are not provided for a parametric **plot**.

For 3-d plotting, the surface is described as x=f(u,v), y=g(u,v), z=h(u,v). Therefore a triplet of functions is required. An example of a 3-d parametric function would be $\cos(u)*\cos(v),\cos(u)*\sin(v),\sin(u)$, which draws a sphere. **gnuplot** will display an error message if all three functions are not provided for a parametric **splot**.

The total set of possible plots is a superset of the simple f(x) style plots, since the two functions can describe the x and y values to be computed separately. In fact, plots of the type t,f(t) are equivalent to those produced with f(x) because the x values are computed using the identity function. Similarly, 3-d plots of the type u,v,f(u,v) are equivalent to f(x,y).

Note that the order the parametric functions are specified is xfunction, yfunction (and zfunction) and that each operates over the common parametric domain.

Also, the **set parametric** function implies a new range of values. Whereas the normal f(x) and f(x,y) style plotting assume an xrange and yrange (and zrange), the parametric mode additionally specifies a trange, urange, and vrange. These ranges may be set directly with **set trange**, **set urange**, and **set vrange**, or by specifying the range on the **plot** or **splot** commands. Currently the default range for these parametric variables is [-5:5]. Setting the ranges to something more meaningful is expected.

40.48 Plot

The **show plot** command shows the current plotting command as it results from the last **plot** and/or **splot** and possible subsequent **replot** commands.

In addition, the **show plot add2history** command adds this current plot command into the **history**. It is useful if you have used **replot** to add more curves to the current plot and you want to edit the whole command now.

40.49 Pm3d

pm3d is an **splot** style for drawing palette-mapped 3d and 4d data as color/gray maps and surfaces. It uses a pm3d algorithm which allows plotting gridded as well as non-gridded data without preprocessing, even when the data scans do not have the same number of points.

Drawing of color surfaces is available on terminals supporting filled colored polygons with color mapping specified by **palette**. Currently supported terminals include

```
Screen terminals:
  OS/2 Presentation Manager
  X11
  Linux VGA (vgagl)
  GGT
  Windows
  AquaTerm (Mac OS X)
Files:
  PostScript
  pslatex, pstex, epslatex
  gif, png, jpeg
  (x)fig
  tgif
  cgm
  pdf
  svg
```

Let us first describe how a map/surface is drawn. The input data come from an evaluated function or from an **splot data file**. Each surface consists of a sequence of separate scans (isolines). The pm3d algorithm fills the region between two neighbouring points in one scan with another two points in the next scan by a gray (or color) according to z-values (or according to an additional 'color' column, see help for **using (p. 54)**) of these 4 corners; by default the 4 corner values are averaged, but this can be changed by the option **corners2color**. In order to get a reasonable surface, the neighbouring scans should not cross and the number of points in the neighbouring scans should not differ too much; of course, the best plot is with scans having same number of points. There are no other requirements (e.g. the data need not be gridded). Another advantage is that the pm3d algorithm does not draw anything outside of the input (measured or calculated) region.

Surface coloring works with the following input data:

- 1. splot of function or of data file with one or three data columns: The gray/color scale is obtained by mapping the averaged (or **corners2color**) z-coordinate of the four corners of the above-specified quadrangle into the range [min_color_z,max_color_z] of **zrange** or **cbrange** providing a gray value in the range [0:1]. This value can be used directly as the gray for gray maps. The normalized gray value can be further mapped into a color see **set palette** (**p. 97**) for the complete description.
- 2. splot of data file with two or four data columns: The gray/color value is obtained by using the last-column coordinate instead of the z-value, thus allowing the color and the z-coordinate be mutually independent. This can be used for 4d data drawing.

Other notes:

- 1. The term 'scan' referenced above is used more among physicists than the term 'iso_curve' referenced in gnuplot documentation and sources. You measure maps recorded one scan after another scan, that's why.
- 2. The 'gray' or 'color' scale is a linear mapping of a continuous variable onto a smoothly varying palette of colors. The mapping is shown in a rectangle next to the main plot. This documentation refers to this as a "colorbox", and refers to the indexing variable as lying on the colorbox axis. See **set colorbox** (p. 72), set cbrange (p. 128).
- 3. To use pm3d coloring to generate a two-dimensional plot rather than a 3D surface, use **set view** map or **set pm3d map**.

Setting **set pm3d** (i.e. without options) sets up the default values. Otherwise, the options can be given in any order.

Color surface can be drawn at the base or top (then it is a gray/color planar map) or at z-coordinates of surface points (gray/color surface). This is defined by the **at** option with a string of up to 6 combinations of **b**, **t** and **s**. For instance, **at b** plots at bottom only, **at st** plots firstly surface and then top map, while **at bstbst** will never by seriously used.

Colored quadrangles are plotted one after another. When plotting surfaces (at s), the later quadrangles overlap (overdraw) the previous ones. (Gnuplot is not virtual reality tool to calculate intersections of filled polygon meshes.) You may try to switch between scansforward and scansbackward to force the first scan of the data to be plotted first or last. The default is scansautomatic where gnuplot makes a guess about scans order.

If two subsequent scans do not have same number of points, then it has to be decided whether to start taking points for quadrangles from the beginning of both scans (flush begin), from their ends (flush end) or to center them (flush center). Note, that flush (center|end) are incompatible with scansautomatic: if you specify flush center or flush end and scansautomatic is set, it is silently switched to scansforward.

If two subsequent scans do not have the same number of points, the option **ftriangles** specifies whether color triangles are drawn at the scan tail(s) where there are not enough points in either of the scan. This can be used to draw a smooth map boundary.

Clipping with respect to x, y coordinates of quadrangles can be done in two ways. **clip1in**: all 4 points of each quadrangle must be defined and at least 1 point of the quadrangle must lie in the x and y ranges. **clip4in**: all 4 points of each quadrangle must lie in the x and y ranges.

There is a single gray/color value associated to each drawn pm3d quadrangle (no smooth color change among vertices). The value is calculated from z-coordinates from the surrounding corners according to corners2color <option>. The options 'mean' (default), 'geomean' and 'median' produce various kinds of surface color smoothing, while options 'min' and 'max' choose minimal or maximal value, respectively. This may not be desired for pixel images or for maps with sharp and intense peaks, in which case the options 'c1', 'c2', 'c3' or 'c4' can be used instead to assign the quadrangle color based on the z-coordinate of only one corner. Some experimentation may be needed to determine which corner corresponds to 'c1', as the orientation depends on the drawing direction. Because the pm3d algorithm does not extend the colored surface outside the range of the input data points, the 'c<j>' coloring options will result in pixels along two edges of the grid not contributing to the color of any quadrangle. For example, applying the pm3d algorithm to the 4x4 grid of data points in script demo/pm3d.dem (please have a look) produces only (4-1)x(4-1)=9 colored rectangles.

Another drawing algorithm, which would draw quadrangles around a given node by taking corners from averaged (x,y)-coordinates of its surrounding 4 nodes while using node's color, could be implemented in the future.

Notice that ranges of z-values and color-values for surfaces are adjustable independently by **set zrange**, **set cbrange**, as well as **set log** for z or cb. Maps can be adjusted by the cb-axis only; see also **set**

view map (p. 119) and set colorbox (p. 72).

The option **hidden3d** takes as the argument a linestyle which must be created by **set style line** (The style need not to be present when setting pm3d, but it must be present when plotting). If set, lines are drawn using the specified line style, taking into account hidden line removal. This is by far more efficient than using the command **set hidden3d** as it doesn't really calculate hidden line removal, but just draws the filled polygons in the correct order. So the recommended choice when using pm3d is

```
set pm3d at s hidden3d 100
set style line 100 lt 5 lw 0.5
unset hidden3d
unset surf
splot x*x+y*y
```

There used to be an option {transparent|solid} to this command. Now you get the same effect from **set grid** {**front**|**layerdefault**}, respectively.

The set pm3d map is an abbreviation for set pm3d at b; set view map; set style data pm3d; set style func pm3d;. It is used for backwards compatibility, when set view map was not available. Take care that you properly use zrange and cbrange for input data point filtering and color range scaling, respectively; and also set (no)surface seems to have a (side?) effect.

The coloring setup as well as the color box drawing are determined by **set palette**. There can be only one palette for the current plot. Drawing of several surfaces with different palettes can be achieved by **multiplot** with fixed **origin** and **size**; don't forget to use **set palette maxcolors** when your terminal is running out of available colors.

If the option **implicit** is on (which is the default), all surface plots will be plotted additionally to the default type, e.g.

```
splot 'fred.dat' with lines, 'lola.dat' with lines
```

would give both plots additionally to a pm3d surface. If the option **implicit** is off (or **explicit** is on) only plots specified by the **with pm3d** attribute are plotted with a pm3d surface, e.g.:

```
splot 'fred.dat' with lines, 'lola.dat' with pm3d
```

would plot 'fred.dat' with lines (and only lines) and 'lola.dat' with a pm3d surface. If **explicit** is on, you can also switch to the default style **pm3d**, e.g.:

```
set style data pm3d
```

Note that when plotting several plots, they are plotted in the order given on the command line. This can be of interest especially for filled surfaces which can overwrite and therefore hide part of earlier plots.

If **with pm3d** is specified in the **splot** command line, then it accepts the 'at' option. The following plots draw three color surfaces at different altitudes:

```
set border 4095 set pm3d at s splot 10*x with pm3d at b, x*x-y*y, x*x+y*y with pm3d at t
```

See also help for set palette (p. 97), set cbrange (p. 128), set colorbox (p. 72), x11 pm3d (p. 179) and definitely the demo file demo/pm3d.dem.

40.50 Palette

Palette is a color storage for use by **pm3d**, filled color contours or polygons, color histograms, color gradient background, and whatever it is or it will be implemented... Here it stands for a palette of smooth "continuous" colors or grays, but let's call it just a palette.

Color palettes require terminal entries for filled color polygons and palettes of smooth colors, are currently available for terminals listed in help for **set pm3d**. The range of color values are adjustable independently by **set cbrange** and **set log cb**. The whole color palette is visualized in the **colorbox**.

Syntax:

```
set palette
set palette {
           { gray | color }
           { gamma <gamma> }
               rgbformulae <r>,<g>,<b>
             | defined { ( <gray1> <color1> {, <grayN> <colorN>}... ) }
             | file '<filename>' {datafile-modifiers}
             | functions <R>,<G>,<B>
           { model { RGB | HSV | CMY | YIQ | XYZ } }
           { positive | negative }
           { nops_allcF | ps_allcF }
           { maxcolors <maxcolors> }
show palette
show palette palette <n> {{float | int}}
show palette gradient
show palette fit2rgbformulae
show palette rgbformulae
show palette colornames
```

set palette (i.e. without options) sets up the default values. Otherwise, the options can be given in any order. **show palette** shows the current palette properties.

show palette gradient displays the gradient defining the palette (if appropriate). show palette rgb-formulae prints the available fixed gray -> color transformation formulae. show palette colornames prints the implemented color names.

show palette palette <n> prints to screen or to the file given by set output table of RGB triplets calculated for the current palette settings and a palette having <n> discrete colors. The default wide table can be limited to 3 columns of r,g,b float values [0..1] or integer values [0..255] by options float or int, respectively. This way, the current gnuplot color palette can be loaded into other imaging applications, for example Octave. Additionally to this textual list of RGB table, you can enjoy command test palette to draw graphically the R,G,B profiles for the current palette.

The following options determine the coloring properties.

Figure using this palette can be **gray** or **color**. For instance, in **pm3d** color surfaces the gray of each small spot is obtained by mapping the averaged z-coordinate of the 4 corners of surface quadrangles into the range [min_z,max_z] providing range of grays [0:1]. This value can be used directly as the gray for gray maps. The color map requires a transformation gray \rightarrow (R,G,B), i.e. a mapping [0:1] \rightarrow ([0:1],[0:1],[0:1]).

Basically two different types of mappings can be used: Analytic formulae to convert gray to color, or discrete mapping tables which are interpolated. **palette rgbformulae** and **palette functions** use analytic formulae whereas **palette defined** and **palette file** use interpolated tables. **palette rgbformulae** reduces the size of postscript output to a minimum.

The command **show palette fit2rgbformulae** finds the best matching **set palette rgbformulae** for the current **set palette**. Naturally, it makes sense to use it for non-rgbformulae palettes. This command can be found useful mainly for external programs using the same rgbformulae definition of palettes as gnuplot, like zimg (

```
http://zimg.sourceforge.net
).
```

set palette gray switches to a gray only palette. set palette rgbformulae, set palette defined, set palette file and set palette functions switch to a color mapping. set palette color is an easy way to switch back from the gray palette to the last color mapping.

Automatic gamma correction via **set palette gamma <gamma>** can be done for gray maps only (**set palette gray**). Linear mapping to gray is for gamma equals 1, see **test palette (p. 132)**. Gamma is ignored for color mappings.

Most terminals support only discrete number of colors (e.g. 256 colors in gif). All entries of the palette remaining after the default gnuplot linetype colors declaration are allocated for pm3d by default. Then multiplot could fail if there are no more color positions in the terminal available. Then you should use set palette maxcolors <maxcolors> with a reasonably small value. This option can also be used to separate levels of z=constant in discrete steps, thus to emulate filled contours. Default value of 0 stays for allocating all remaining entries in the terminal palette or for to use exact mapping to RGB.

RGB color space might not be the most useful color space to work in. For that reason you may change the color space with **model** to one of **RGB**, **HSV**, **CMY**, **YIQ** and **XYZ**. Using color names for **set palette defined** tables and a color space other than RGB will result in funny colors. All explanation have been written for RGB color space, so please note, that **R** can be **H**, **C**, **Y**, or **X**, depending on the actual color space (**G** and **B** accordingly).

All values for all color spaces are limited to [0,1].

RGB stands for Red, Green and Blue; CMY stands for Cyan, Magenta and Yellow; HSV stands for Hue, Saturation, and Value; YIQ is the color model used by the U.S. Commercial Color Television Broadcasting, it is basically an RGB recoding with downward compatibility for black and white television; XYZ are the three primary colors of the color model defined by the 'Commission Internationale de l'Eclairage' (CIE). For more information on color models see:

```
http://www.cs.rit.edu/~ ncs/color/glossary.htm
and
http://cs.fit.edu/wds/classes/cse5255/cse5255/davis/index.html
```

40.50.1 Rgbformulae

For **rgbformulae** three suitable mapping functions have to be chosen. This is done via **rgbformulae** $\langle \mathbf{r} \rangle, \langle \mathbf{g} \rangle, \langle \mathbf{b} \rangle$. The available mapping functions are listed by **show palette rgbformulae**. Default is **7,5,15**, some other examples are **3,11,6**, **21,23,3** or **3,23,21**. Negative numbers, like **3,-11,-6**, mean inverted color (i.e. 1-gray passed into the formula, see also **positive** (**p. 99**) and **negative** (**p. 99**) options below).

Some nice schemes in RGB color space

```
7,5,15 ... traditional pm3d (black-blue-red-yellow)
3,11,6 ... green-red-violet
23,28,3 ... ocean (green-blue-white); try also all other permutations
21,22,23 ... hot (black-red-yellow-white)
30,31,32 ... color printable on gray (black-blue-violet-yellow-white)
33,13,10 ... rainbow (blue-green-yellow-red)
34,35,36 ... AFM hot (black-red-yellow-white)
```

A full color palette in HSV color space

```
3,2,2 ... red-yellow-green-cyan-blue-magenta-red
```

Please note that even if called **rgbformulae** the formulas might actually determine the H>, <S>, <V> or <X>, <Y>, <Z> or ... color components as usual.

Use **positive** and **negative** to invert the figure colors.

Note that it is possible to find a set of the best matching rgbformulae for any other color scheme by the command

```
show palette fit2rgbformulae
```

40.50.2 Defined

Gray-to-rgb mapping can be manually set by use of **palette defined**: A color gradient is defined and used to give the rgb values. Such a gradient is a piecewise linear mapping from gray values in [0,1] to the RGB space [0,1]x[0,1]x[0,1]. You have to specify the gray values and the corresponding RGB values in between a linear interpolation shall take place:

Syntax:

```
set palette defined { ( <gray1> <color1> {, <grayN> <colorN>}... ) }
```

 $\langle \text{gray X} \rangle$ are gray values which are mapped to [0,1] and $\langle \text{color X} \rangle$ are the corresponding rgb colors. The color can be specified in three different ways:

```
<color> := { <r> <g> <b> | '<color-name>' | '#rrggbb' }
```

Either by three numbers (each in [0,1]) for red, green and blue, separated by whitespace, or the name of the color in quotes or X style color specifiers also in quotes. You may freely mix the three types in a gradient definition, but the named color "red" will be something strange if RGB is not selected as color space. Use **show palette colornames** for a list of known color names.

Please note, that even if written as <r>, this might actually be the <H> component in HSV color space or <X> in CIE-XYZ space, or ... depending on the selected color model.

The $\langle \text{gray} \rangle$ values have to form an ascending sequence of real numbers; the sequence will be automatically rescaled to [0,1].

set palette defined (without a gradient definition in braces) switches to RGB color space and uses a preset full-spectrum color gradient. Use show palette gradient to display the gradient.

Examples:

```
To produce a gray palette (useless but instructive) use:
    set palette model RGB
    set palette defined ( 0 "black", 1 "white" )
To produce a blue yellow red palette use (all equivalent):
     set palette defined ( 0 "blue", 1 "yellow", 2 "red" )
     set palette defined ( 0 0 0 1, 1 1 1 0, 2 1 0 0 )
     set palette defined ( 0 "#0000ff", 1 "#ffff00", 2 "ff0000" )
To produce some rainbow-like palette use:
     set palette defined ( 0 "blue", 3 "green", 6 "yellow", 10 "red" )
Full color spectrum within HSV color space:
     set palette model HSV
     set palette defined ( 0 0 1 1, 1 1 1 1)
     set palette defined ( 0 0 1 0, 1 0 1 1, 6 0.8333 1 1, 7 0.8333 0 1)
To produce a palette with few colors only use:
     set palette model RGB maxcolors 4
     set palette defined ( 0 "blue", 1 "green", 2 "yellow", 3 "red" )
'Traffic light' palette (non-smooth color jumps at gray = 1/3 and 2/3).
     set palette model RGB
     set palette defined (0 "dark-green", 1 "green", 1 "yellow", \
                           2 "dark-yellow", 2 "red", 3 "dark-red" )
```

40.50.3 Functions

Use **set palette functions** <**Rexpr**>, <**Gexpr**>, <**Bexpr**> to define three formulae for the R(gray), G(gray) and B(gray) mapping. The three formulae may depend on the variable **gray** which will take values in [0,1] and should also produce values in [0,1]. Please note that <Rexpr> might be a formula for the H-value if HSV color space has been chosen (same for all other formulae and color spaces).

Examples:

```
To produce a full color palette use:
```

```
set palette model HSV functions gray, 1, 1
```

A nice black to gold palette:

```
set palette model XYZ functions gray**0.35, gray**0.5, gray**0.8
```

A gamma-corrected black and white palette

```
gamma = 2.2
color(gray) = gray**(1./gamma)
set palette model RGB functions color(gray), color(gray), color(gray)
```

40.50.4 File

set palette file is basically a set palette defined (<gradient>) where <gradient> is read from a datafile. Either 4 columns (gray,R,G,B) or just three columns (R,G,B) have to be selected via the using data file modifier. In the three column case, the line number will be used as gray. The gray range is automatically rescaled to [0,1]. The file is read as a normal data file, so all datafile modifiers can be used. Please note, that **R** might actually be e.g. **H** if HSV color space is selected.

As usual <filename> may be '-' which means that the data follow the command inline and are terminated by a single \mathbf{e} on a line of its own.

Use **show palette gradient** to display the gradient.

Examples:

Read in a palette of RGB triples each in range [0,255]:

```
set palette file 'some-palette' using ($1/255):($2/255):($3/255)
```

Equidistant rainbow (blue-green-yellow-red) palette:

```
set palette model RGB file "-"
0 0 1
0 1 0
1 1 0
1 0 0
e
```

40.50.5 Gamma-correction

For gray mappings gamma correction can be turned on by **set palette gamma** < **gamma** >. < gamma> defaults to 1.5 which is quite suitable for most terminals.

For color mappings no automatic gamma correction is done by gnuplot. But you may easily implement gamma correction, here an example for a gray scale image by use of explicit functions for the red, green and blue component with slightly different values of gamma

Example:

```
set palette model RGB
set palette functions gray**0.64, gray**0.67, gray**0.70
```

To use gamma correction with interpolated gradients specify intermediate gray values with appropriate colors. Instead of

```
set palette defined ( 0 0 0 0, 1 1 1 1 )
use e.g.
set palette defined ( 0 0 0 0, 0.5 .73 .73 .73, 1 1 1 1 )
```

or even more intermediate points until the linear interpolation fits the "gamma corrected" interpolation well enough.

40.50.6 Postscript

In order to reduce the size of postscript files, the gray value and not all three calculated r,g,b values are written to the file. Therefore the analytical formulae are coded directly in the postscript language as a header just before the pm3d drawing, see /g and /cF definitions. Usually, it makes sense to write therein definitions of only the 3 formulae used. But for multiplot or any other reason you may want to manually edit the transformations directly in the postscript file. This is the default option nops_allcF. Using the option ps_allcF writes postscript definitions of all formulae. This you may find interesting if you want to edit the postscript file in order to have different palettes for different surfaces in one graph. Well, you can achieve this functionality by multiplot with fixed origin and size.

If pm3d map has been plotted from gridded or almost regular data with an output to a postscript file, then it is possible to reduce the size of this postscript file up to at about 50% by the enclosed awk script **pm3dCompress.awk**. This you may find interesting if you intend to keep the file for including it into your publication or before downloading a very large file into a slow printer. Usage:

```
awk -f pm3dCompress.awk thefile.ps >smallerfile.ps
```

If pm3d map has been plotted from rectangular gridded data with an output to a postscript file, then it is possible to reduce the file size even more by the enclosed awk script **pm3dConvertToImage.awk**. Usage:

```
awk -f pm3dConvertToImage.awk <thefile.ps >smallerfile.ps
```

You may manually change the postscript output from gray to color and vice versa and change the definition of <maxcolors>.

40.50.7 Colornames

Gnuplot knows a limited number of color names. You can use these to define the color range spanned by a pm3d palette, or to assign a terminal-independent colot to a particular linetype or linestyle. To see the list of know color names, use the command show palette colornames (p. 102). See set palette (p. 97), linestyle (p. 107).

40.51 Pointsize

The **set pointsize** command scales the size of the points used in plots.

Syntax:

```
set pointsize <multiplier>
show pointsize
```

The default is a multiplier of 1.0. Larger pointsizes may be useful to make points more visible in bitmapped graphics.

The pointsize of a single plot may be changed on the **plot** command. See **plot with (p. 59)** for details. Please note that the pointsize setting is not supported by all terminal types.

40.52 Polar

The **set polar** command changes the meaning of the plot from rectangular coordinates to polar coordinates.

Syntax:

```
set polar
unset polar
show polar
```

There have been changes made to polar mode in version 3.7, so that scripts for **gnuplot** versions 3.5 and earlier will require modification. The main change is that the dummy variable t is used for the angle so

that the x and y ranges can be controlled independently. Other changes are: 1) tics are no longer put along the zero axes automatically — use **set xtics axis nomirror**; **set ytics axis nomirror**; 2) the grid, if selected, is not automatically polar — use **set grid polar**; 3) the grid is not labelled with angles — use **set label** as necessary.

In polar coordinates, the dummy variable (t) is an angle. The default range of t is [0:2*pi], or, if degree units have been selected, to [0:360] (see set angles (p. 64)).

The command **unset polar** changes the meaning of the plot back to the default rectangular coordinate system.

The set polar command is not supported for splots. See the set mapping (p. 88) command for similar functionality for splot (p. 129)s.

While in polar coordinates the meaning of an expression in t is really r = f(t), where t is an angle of rotation. The trange controls the domain (the angle) of the function, and the x and y ranges control the range of the graph in the x and y directions. Each of these ranges, as well as the rrange, may be autoscaled or set explicitly. See **set xrange** (**p. 122**) for details of all the **ranges** (**p. 58**) commands.

Example:

```
set polar
plot t*sin(t)
plot [-2*pi:2*pi] [-3:3] [-3:3] t*sin(t)
```

The first **plot** uses the default polar angular domain of 0 to 2*pi. The radius and the size of the graph are scaled automatically. The second **plot** expands the domain, and restricts the size of the graph to [-3:3] in both directions.

You may want to **set size square** to have **gnuplot** try to make the aspect ratio equal to unity, so that circles look circular. See also

```
polar demos (polar.dem)
and
polar data plot (poldat.dem).
```

40.53 Print

The **set print** command redirects the output of the **print** command to a file.

Syntax:

```
set print
set print "-"
set print "<filename>"
set print "<filename>" append
set print "|<shell_command>"
```

Without "<filename>", the output file is restored to <STDERR>. The <filename> "-" means <STDOUT>. The append flag causes the file to be opened in append mode. A <filename> starting with "|" is opened as a pipe to the <shell_command> on platforms that support piping.

40.54 Rmargin

The command set rmargin sets the size of the right margin. Please see set margin (p. 89) for details.

40.55 Rrange

The **set rrange** command sets the range of the radial coordinate for a graph in polar mode. Please see **set xrange** (p. 122) for details.

40.56 Samples

The sampling rate of functions, or for interpolating data, may be changed by the **set samples** command. Syntax:

```
set samples <samples_1> {,<samples_2>}
show samples
```

By default, sampling is set to 100 points. A higher sampling rate will produce more accurate plots, but will take longer. This parameter has no effect on data file plotting unless one of the interpolation/approximation options is used. See plot smooth (p. 52) re 2-d data and set cntrparam (p. 70) and set dgrid3d (p. 76) re 3-d data.

When a 2-d graph is being done, only the value of <samples_1> is relevant.

When a surface plot is being done without the removal of hidden lines, the value of samples specifies the number of samples that are to be evaluated for the isolines. Each iso-v line will have <sample_1> samples and each iso-u line will have <sample_2> samples. If you only specify <samples_1>, <samples_2> will be set to the same value as <samples_1>. See also set isosamples (p. 83).

40.57 Size

The **set size** command scales the displayed size of the plot.

Syntax:

```
set size {{no}square | ratio <r> | noratio} {<xscale>,<yscale>}
show size
```

The <xscale> and <yscale> values are the scaling factors for the size of the plot, which includes the graph and the margins.

ratio causes gnuplot to try to create a graph with an aspect ratio of <r> (the ratio of the y-axis length to the x-axis length) within the portion of the plot specified by <xscale> and <yscale>.

The meaning of a negative value for $\langle r \rangle$ is different. If $\langle r \rangle = -1$, gnuplot tries to set the scales so that the unit has the same length on both the x and y axes (suitable for geographical data, for instance). If $\langle r \rangle = -2$, the unit on y has twice the length of the unit on x, and so on.

The success of **gnuplot** in producing the requested aspect ratio depends on the terminal selected. The graph area will be the largest rectangle of aspect ratio $\langle r \rangle$ that will fit into the specified portion of the output (leaving adequate margins, of course).

square is a synonym for ratio 1.

Both **noratio** and **nosquare** return the graph to the default aspect ratio of the terminal, but do not return <xscale> or <yscale> to their default values (1.0).

ratio and square have no effect on 3-d plots.

set size is relative to the default size, which differs from terminal to terminal. Since **gnuplot** fills as much of the available plotting area as possible by default, it is safer to use set size to decrease the size of a plot than to increase it. See set terminal (p. 115) for the default sizes.

On some terminals, changing the size of the plot will result in text being misplaced.

Examples:

```
To set the size to normal size use:
```

```
set size 1,1
```

To make the graph half size and square use:

```
set size square 0.5,0.5
```

To make the graph twice as high as wide use:

```
set size ratio 2
```

See also

airfoil demo.

40.58 Style

Default plotting styles are chosen with the **set style data** and **set style function** commands. See **plot** with (p. 59) for information about how to override the default plotting style for individual functions and data sets. See **plotting styles** (p. 108) for a complete list of styles.

Syntax:

```
set style function <style>
set style data <style>
show style function
show style data
```

Default styles for specific plotting elements may also be set.

Syntax:

```
set style arrow <n> <arrowstyle>
set style fill <fillstyle>
set style histogram <histogram style options>
set style line <n> <arrowstyle></a>
```

40.58.1 Set style arrow

Each terminal has a default set of arrow and point types, which can be seen by using the command **test**. **set style arrow** defines a set of arrow types and widths and point types and sizes so that you can refer to them later by an index instead of repeating all the information at each invocation.

Syntax:

<index> is an integer that identifies the arrowstyle.

Specifying **nohead** produces arrows drawn without a head — a line segment. This gives you yet another way to draw a line segment on the plot. By default, arrows have one head. Specifying **heads** draws arrow heads on both ends of the line.

Head size can be controlled by size <length>,<angle> or size <length>,<angle>,<backangle> where <length> defines length of each branch of the arrow head and <angle> the angle (in degrees) they make with the arrow. <Length> is in x-axis units; this can be changed by first, second, graph, screen, character before the <length>; see coordinates (p. 20) for details. <Backangle> only takes effect when filled or empty is also used. Then, <backangle> is the angle (in degrees) the back branches make with the arrow (in the same direction as <angle>). The fig terminal has a restricted backangle function. It supports three different angles. There are two thresholds: Below 70 degrees, the arrow head gets an indented back angle. Above 110 degrees, the arrow head has an acute back angle. Between these thresholds, the back line is straight.

Specifying **filled** produces filled arrow heads (if heads are used). Filling is supported on filled-polygon capable terminals, see help of **pm3d** (**p. 95**) for their list, otherwise the arrow heads are closed but not filled. The same result (closed but not filled arrow head) is reached by specifying **empty**. Further, filling and outline is obviously not supported on terminals drawing arrows by their own specific routines, like **metafont**, **metapost**, **latex** or **tgif**.

The line style may be selected from a user-defined list of line styles (see **set style line (p. 107)**) or may be defined here by providing values for <**line_type**> (an index from the default list of styles) and/or <**line_width**> (which is a multiplier for the default width).

Note, however, that if a user-defined line style has been selected, its properties (type and width) cannot be altered merely by issuing another **set style arrow** command with the appropriate index and **lt** or **lw**.

If **front** is given, the arrows are written on top of the graphed data. If **back** is given (the default), the arrow is written underneath the graphed data. Using **front** will prevent a arrow from being obscured by dense data.

Examples:

To draw an arrow without an arrow head and double width, use:

```
set style arrow 1 nohead lw 2
set arrow arrowstyle 1
See also 'set arrow' for further examples.
```

40.58.2 Set style data

The set style data command changes the default plotting style for data plots.

Syntax:

```
set style data <plotting-style>
show style data
```

See plotting styles (p. 108) for the choices. If no choice is given, the choices are listed. show style data shows the current default data plotting style.

40.58.3 Set style fill

The set style fill command is used to set the style of boxes, histograms or candlesticks.

Syntax:

The default fillstyle is **empty**.

The **solid** option causes filling with a solid color, if the terminal supports that. The <density> parameter specifies the intensity of the fill color. At a <density> of 0.0, the box is empty, at <density> of 1.0, the inner area is of the same color as the current linetype. Some terminal types can vary the density continuously; others implement only a few levels of partial fill. If no <density> parameter is given, it defaults to 1.

The **pattern** option causes filling to be done with a fill pattern supplied by the terminal driver. The kind and number of available fill patterns depend on the terminal driver. If multiple datasets using filled boxes are plotted, the pattern cycles through all available pattern types, starting from pattern $\langle n \rangle$, much as the line type cycles for multiple line plots.

The **empty** option causes filled boxes not to be filled. This is the default. It is equivalent to the **solid** option with a <density> parameter of zero.

By default, **border**, the box is bounded by a solid line of the current linetype. **border** <**lt**> specifies that a border is to be drawn using linetype <**lt**>. **noborder** specifies that no bounding lines are drawn.

40.58.4 Set style function

The set style function command changes the default plotting style for function plots.

Syntax:

```
set style function <plotting-style>
show style function
```

See plotting styles (p. 108) for the choices. If no choice is given, the choices are listed. show style function shows the current default function plotting style.

40.58.5 Set style line

Each terminal has a default set of line and point types, which can be seen by using the command **test**. **set style line** defines a set of line types and widths and point types and sizes so that you can refer to them later by an index instead of repeating all the information at each invocation.

Syntax:

The line and point types are taken from the default types for the terminal currently in use. The line width and point size are multipliers for the default width and size (but note that <point_size> here is unaffected by the multiplier given on set pointsize).

The defaults for the line and point types is the index. The defaults for the width and size are both unity. Linestyles created by this mechanism do not replace the default styles; both may be used.

Not all terminals support the **linewidth** and **pointsize** features; if not supported, the option will be ignored.

Note that this feature is not completely implemented; linestyles defined by this mechanism may be used with **plot**, **splot**, **replot**, and **set arrow**, but not by other commands that allow the default index to be used, such as **set grid**.

If gnuplot was built with pm3d support, terminal-independent colors may be assigned using the <colorspec>. This requires giving a RGB color triple, a known palette color name, a fractional index into the current palette, or a constant value from the current mapping of the palette onto cbrange. See colors (p. 27), colorspec (p. 28), set palette (p. 97), colornames (p. 102), cbrange (p. 128).

In 3d mode (**splot** command), the special keyword **palette** is allowed as a shorthand for "linetype palette z". The color value corresponds to the z-value (elevation) of the splot, and varies smoothly along a line or surface.

Example: Suppose that the default lines for indices 1, 2, and 3 are red, green, and blue, respectively, and the default point shapes for the same indices are a square, a cross, and a triangle, respectively. Then

```
set style line 1 lt 2 lw 2 pt 3 ps 0.5
```

defines a new linestyle that is green and twice the default width and a new pointstyle that is a half-sized triangle. The commands

```
set style function lines plot f(x) lt 3, g(x) ls 1
```

will create a plot of f(x) using the default blue line and a plot of g(x) using the user-defined wide green line. Similarly the commands

```
set style function linespoints plot p(x) lt 1 pt 3, q(x) ls 1
```

will create a plot of p(x) using the default triangles connected by a red line and q(x) using small triangles connected by a green line.

```
splot sin(sqrt(x*x+y*y))/sqrt(x*x+y*y) w l pal
```

creates a surface plot using smooth colors according to **palette**. Note, that this works only on some terminals.

```
See also set palette (p. 97), set pm3d (p. 95).
```

40.58.6 Plotting styles

The commands **set style data** and **set style function** change the default plotting style for subsequent **plot** and **splot** commands.

The types used for all line and point styles (i.e., solid, dash-dot, color, etc. for lines; circles, squares, crosses, etc. for points) will be either those specified on the **plot** or **splot** command or will be chosen sequentially from the types available to the terminal in use. Use the command **test** to see what is available.

None of the styles requiring more than two columns of information (e.g., **errorbars** or **errorlines**) can be used with **splots** or function **plots**. Neither **boxes**, **filledcurves** nor any of the **steps** styles can be used with **splots**. If an inappropriate style is specified, it will be changed to **points**.

The above caveat does not apply to **plot with labels**, for which the third column specifies a data source rather than coordinate information. See **set style labels** (**p. 113**).

For 2-d data with more than two columns, **gnuplot** is picky about the allowed **errorbars** and **errorlines** styles. The **using** option on the **plot** command can be used to set up the correct columns for the style you want. (In this discussion, "column" will be used to refer both to a column in the data file and an entry in the **using** list.)

For three columns, only **xerrorbars**, **yerrorbars** (or **errorbars**), **xerrorlines**, **yerrorlines** (or **errorlines**), **boxes**, and **boxerrorbars** are allowed. If another plot style is used, the style will be changed to **yerrorbars**. The **boxerrorbars** style will calculate the boxwidth automatically.

For four columns, only **xerrorbars**, **yerrorbars** (or **errorbars**), **xyerrorbars**, **xerrorlines**, **yerrorlines**, **to xyerrorbars**, and **boxerrorbars** are allowed. An illegal style will be changed to **yerrorbars**.

Five-column data allow only the **boxerrorbars**, **financebars**, and **candlesticks** styles. An illegal style will be changed to **boxerrorbars** before plotting.

Six- and seven-column data only allow the **xyerrorbars**, **xyerrorlines**, and **boxxyerrorbars** styles. Illegal styles will be changed to **xyerrorbars** before plotting.

For more information about error bars with and without lines, please see **plot errorlines** (**p. 57**) and **plot errorbars** (**p. 56**).

40.58.6.1 Boxerrorbars The boxerrorbars style is only relevant to 2-d data plotting. It is a combination of the boxes and yerrorbars styles. The boxwidth will come from the fourth column if the y errors are in the form of "ydelta" and the boxwidth was not previously set equal to -2.0 (set boxwidth -2.0) or from the fifth column if the y errors are in the form of "ylow yhigh". The special case boxwidth = -2.0 is for four-column data with y errors in the form "ylow yhigh". In this case the boxwidth will be calculated so that each box touches the adjacent boxes. The width will also be calculated in cases where three-column data are used.

The box height is determined from the y error in the same way as it is for the **yerrorbars** style — either from y-ydelta to y+ydelta or from ylow to yhigh, depending on how many data columns are provided. See also

errorbar demo.

40.58.6.2 Boxes The boxes style is only relevant to 2-d plotting. It draws a box centered about the given x coordinate from the x axis (not the graph border) to the given y coordinate. The width of the box is obtained in one of three ways. If it is a data plot and the data file has a third column, this will be used to set the width of the box. If not, if a width has been set using the **set boxwidth** command, this will be used. If neither of these is available, the width of each box will be calculated automatically so that it touches the adjacent boxes.

The interior of the boxes is drawn according to the current fillstyle. See **set style fill (p. 106)** for details. Alternatively a new fillstyle may be specified in the plot command.

For fillstyle **empty** the box is filled with the background color.

For fillstyle **solid** the box is filled with a solid rectangle of the current drawing color. There is an optional parameter <density> that controls the fill density; it runs from 0 (background color) to 1 (current drawing color).

For fillstyle **pattern** the box is filled in the current drawing color with a pattern, if supported by the terminal driver.

Examples:

To plot a data file with solid filled boxes with a small vertical space separating them (bargraph):

```
set boxwidth 0.9 relative
set style fill solid 1.0
plot 'file.dat' with boxes
```

To plot a sine and a cosine curve in pattern-filled boxes style:

```
set style fill pattern
plot sin(x) with boxes, cos(x) with boxes
```

The sin plot will use pattern 0; the cos plot will use pattern 1. Any additional plots would cycle through the patterns supported by the terminal driver.

To specify explicit fillstyles for each dataset:

```
plot 'file1' with boxes fs solid 0.25, \
    'file2' with boxes fs solid 0.50, \
    'file3' with boxes fs solid 0.75, \
    'file4' with boxes fill pattern 1, \
    'file5' with boxes fill empty
```

Currently only the following terminal drivers support fillstyles other than **empty**: x11, windows, pm, postscript, fig, pbm, png, gif, hpdj, hppj, hpljii, hp500c, jpeg, nec_cp6, epson_180dpi, epson_60dpi, epson_lx800, okidata, starc and tandy_60dpi. The BeOS driver (**be**) is untested.

40.58.6.3 Boxxyerrorbars The boxxyerrorbars style is only relevant to 2-d data plotting. It is a combination of the boxes and xyerrorbars styles.

The box width and height are determined from the x and y errors in the same way as they are for the **xyerrorbars** style — either from xlow to xhigh and from ylow to yhigh, or from x-xdelta to x+xdelta and from y-ydelta to y+ydelta, depending on how many data columns are provided.

If filled-box support is present, then the interior of the boxes is drawn according to the current fillstyle. See **set style fill (p. 106)** and **boxes (p. 108)** for details. Alternatively a new fillstyle may be specified in the plot command.

40.58.6.4 Candlesticks The candlesticks style can be used for 2-d data plotting of financial data or for generating box-and-whisker plots of statistical data. Five columns of data are required; in order, these should be the x coordinate (most likely a date) and the opening, low, high, and closing prices. The symbol is a rectangular box, centered horizontally at the x coordinate and limited vertically by the opening and closing prices. A vertical line segment at the x coordinate extends up from the top of the rectangle to the high price and another down to the low. The vertical line will be unchanged if the low and high prices are interchanged.

The width of the rectangle can be controlled by the **set boxwidth** command. For backwards compatibility with earlier gnuplot versions, when the boxwidth parameter has not been set then the width of the candlestick rectangle is controlled by **set bars** <**width**>.

By default the rectangle is empty if (open > close), and filled with three vertical bars if (close > open). If filled-boxes support is present, then the rectangle is colored according to **set style fill <fillstyle**>. See **set bars (p. 68)** and **financebars (p. 111)**. See also

```
finance demos
```

Note: To place additional symbols, such as the median value, on a box-and-whisker plot requires additional plot commands as in this example:

40.58.6.5 Dots The **dots** style plots a tiny dot at each point; this is useful for scatter plots with many points.

40.58.6.6 Filledcurves The filledcurves style is only relevant to 2-d plotting. Three variants are possible. The first two variants require either a function or two columns of input data, and may be further modified by the options listed below. The first variant, **closed**, treats the curve itself as a closed polygon. This is the default.

The second variant is to fill the area between the curve and a given axis, a horizontal or vertical line, or a point.

The third variant requires three columns of input data: the x coordinate and two y coordinates corresponding to two curves sampled at the same set of x coordinates; the area between the two curves is filled.

Syntax:

```
set style [data | function] filledcurves [option]
plot ... with filledcurves [option]
where the option can be
  [closed | {above | below} {x1 | x2 | y1 | y2}[=<a>] | xy=<x>,<y>]
```

The first two plot variants can be further modified by the options

```
filledcurves closed ... just filled closed curve, filledcurves x1 ... x1 axis, filledcurves x2 ... x2 axis, etc for y1 and y2 axes, filledcurves y1=0 ... line y=0 (at y1 axis) ie parallel to x1 axis, filledcurves y2=42 ... line y=42 (at y2 axis) ie parallel to x2, etc, filledcurves xy=10,20 ... point 10,20 of x1,y1 axes (arc-like shape).
```

Example of filling the area between two input curves.

```
fill between curves demo.
plot 'data' using 1:2:3 with filledcurves
```

The above and below options apply both to commands of the form

```
... filledcurves above \{x1|x2|y1|y2\}=\langle val \rangle
```

and to commands of the form

```
... using 1:2:3 with filledcurves below
```

In either case the option limits the filled area to one side of the bounding line or curve.

Note: Not all terminal types support this plotting mode.

Zoom of a filled curve drawn from a datafile may produce empty or incorrect area because gnuplot is clipping points and lines, and not areas.

If the values of $\langle a \rangle$, $\langle x \rangle$, $\langle y \rangle$ are out of the drawing boundary, then they are moved to the graph boundary. Then the actually filled area in the case of option $xy=\langle x \rangle$, $\langle y \rangle$ will depend on xrange and yrange.

40.58.6.7 Financebars The financebars style is only relevant for 2-d data plotting of financial data. Five columns of data are required; in order, these should be the x coordinate (most likely a date) and the opening, low, high, and closing prices. The symbol is a vertical line segment, located horizontally at the x coordinate and limited vertically by the high and low prices. A horizontal tic on the left marks the opening price and one on the right marks the closing price. The length of these tics may be changed by set bars. The symbol will be unchanged if the high and low prices are interchanged. See set bars (p. 68) and candlesticks (p. 109), and also the

finance demo.

40.58.6.8 Fsteps The **fsteps** style is only relevant to 2-d plotting. It connects consecutive points with two line segments: the first from (x1,y1) to (x1,y2) and the second from (x1,y2) to (x2,y2). See also

steps demo.

40.58.6.9 Histeps The **histeps** style is only relevant to 2-d plotting. It is intended for plotting histograms. Y-values are assumed to be centered at the x-values; the point at x1 is represented as a horizontal line from ((x0+x1)/2,y1) to ((x1+x2)/2,y1). The lines representing the end points are extended so that the step is centered on at x. Adjacent points are connected by a vertical line at their average x, that is, from ((x1+x2)/2,y1) to ((x1+x2)/2,y2).

If **autoscale** is in effect, it selects the xrange from the data rather than the steps, so the end points will appear only half as wide as the others. See also

```
steps demo.
```

histeps is only a plotting style; **gnuplot** does not have the ability to create bins and determine their population from some data set.

40.58.6.10 Histograms The **histograms** style is only relevant to 2-d plotting. It produces a bar chart from a sequence of data columns in parallel. Each element of the **plot** command must specify a single input data source (e.g. one column of the input file), possibly with associated tic values or key titles. Three styles of histogram layout are currently supported.

```
set style histogram clustered {gap <gapsize>}
set style histogram rowstacked
set style histogram columnstacked
```

The default style corresponds to **set style histogram clustered gap 2**. Each set of parallel data values is collected into a group of boxes clustered at the x-axis coordinate corresponding to their sequential position (row #) in the selected datafile columns. Thus if <n> datacolumns are selected, the first cluster is centered about x=1, and contains <n> boxes whose heights are taken from the first entry in the corresponding <n> data columns. This is followed by a gap and then a second cluster of boxes centered about x=2 corresponding to the second entry in the respective data columns, and so on. The default gap width of 2 indicates that the empty space between clusters is equivalent to the width of 2 boxes. All boxes derived from any one column are given the same fill color and/or pattern (see **set style fill (p. 106)**).

Each cluster of boxes is derived from a single row of the input data file. It is common in such input files that the first element of each row is a label. Labels from this column may be placed along the x-axis underneath the appropriate cluster of boxes with the **xticlabels** option to **using**.

Two styles of stacked histogram are supported, chosen by the command **set style histogram** {rowstacked|columnstacked}. In these styles the data values from the selected columns are collected into stacks of boxes. The default stacking mode is rowstacked.

The **rowstacked** style places a box resting on the x-axis for each data value in the first selected column; the first data value results in a box a x=1, the second at x=2, and so on. Boxes corresponding to the second and subsequent data columns are layered on top of these, resulting in a stack of boxes at x=1 representing the first data value from each column, a stack of boxes at x=2 representing the second data

value from each column, and so on. All boxes derived from any one column are given the same fill color and/or pattern (see set style fill (p. 106)).

The **columnstacked** style is similar, except that each stack of boxes is built up from a single data column. Each data value from the first specified column yields a box in the stack at x=1, each data value from the second specified column yields a box in the stack at x=2, and so on. In this style the color of each box is taken from the row number, rather than the column number, of the corresponding data field

Box widths may be modified using the **set boxwidth** command. Box fill styles may be set using the **set style fill** command.

Examples:

To plot a data file containing multiple columns of data as a histogram of clustered boxes (the default style):

```
set boxwidth 0.9 relative
set style data histograms
set style fill solid 1.0 border -1
plot 'file.dat' using 2, '' using 4, '' using 3
```

This will produce a plot with clusters of three boxes (vertical bars) centered at each integral value on the x axis. If the first column of the input file contains labels, they may be placed along the x-axis using the variant command

```
plot 'file.dat' using 2, '' using 4, '' using 3:xticlabels(1)
```

To plot the same data as a rowstacked histogram:

```
set style histogram rows
plot 'file.dat' using 2, '' using 4, '' using 3:xtic(1)
```

This will produce a plot in which each vertical bar contains a stack of three segments, corresponding in height to the values found in columns 2, 4 and 3 of the datafile.

Finally, the commands

```
set style histogram columnstacked
plot 'file.dat' using 2, '' using 4, '' using 3
```

will produce three vertical stacks. The stack at x=1 will contain a box for each entry in column 2 of the datafile. The stack at x=2 will contain a box for each parallel entry in column 4 of the datafile, and the stack at x=3 a box for each entry of column 3.

More than one set of histograms can appear in a single plot. In this case you can force a gap between them, and a separate label for each set, by using the **newhistogram** { "title" } { linestyle> } plot command. For example

The labels "Set A" and "Set B" will appear beneath the respective sets of histograms, under the overall x axis label.

The newhistogram command can also be used to force histogram coloring to begin with a specific color (linetype). By default colors will continue to increment successively even across histogram boundaries. Here is an example using the same coloring for multiple histograms

```
plot newhistogram "Set A" lt 4, 'a' using 1, '' using 2, '' using 3, \
newhistogram "Set B" lt 4, 'b' using 1, '' using 2, '' using 3
```

40.58.6.11 Image The **image** style is intended for plotting 2D images. It may be used for both **plot** and **splot** provided the 3D data (x,y,value) or projected 4D data (x,y,z,value) forms a valid grid. A valid grid is one in which the data in the viewing plane is equidistant along two, not necessarily orthogonal, directions. In other words, groups of four adjacent points must form the same size parallelogram. The variable **value** in the tuples represent a palette color (gray value) for indexing in the current palette.

If the data points form a valid rectangular grid, i.e., a valid grid for which the directions are orthogonal and lie along the x and y axes of the viewing plane, the **image** style will attempt to create a properly positioned and scaled data matrix to match the plot borders for those terminals supporting palettes and images. The result is efficient storage and fast refresh. However, for terminal drivers not supporting palettes and images, or those not yet implemented, the **image** style will revert to drawing filled rectangular boxes for pixels, which is not as efficient. Furthermore, general parallelogram-shaped images have filled parallelograms for pixels.

The coordinate of each data point of an image will lie at the center of a pixel. That is, an M \times N set of data will form an image with M \times N pixels. This is slightly different than pm3d elements where an M \times N set of data will form a surface of (M-1) \times (N-1) elements. The scan directions for the image data grid can be any of eight possible combinations.

Currently only the following terminal drivers support data matrix images:

x11 - Pixels are either repeated or decimated to fit the x11 resolution;

no other processing (filtering) is done. Thus, aliasing may occur when decimating images having high spatial frequency content.

postscript (pslatex, epslatex, pstex) - Image is copied in its original

resolution, and sample interpolation is turned off.

png - Output is dependent on the installed version of libgd.

gd 1.8.4 No truecolor support, but the driver function works.

gd 2.0.4 Truecolor works, but if truecolor is not selected the image comes out blank.

gd 2.0.9 Truecolor works, non-truecolor also works.

aqua pdf, svg

See also rgbimage (p. 114).

40.58.6.12 Impulses The impulses style displays a vertical line from the x axis (not the graph border), or from the grid base for **splot**, to each point.

40.58.6.13 Labels The labels style is available only if gnuplot is built with configuration option—enable-datastrings. For a 2-D plot with labels you must specify 3 input data columns; the text string found in the third column is printed at the X and Y coordinates generated by the first two column specifiers. The font, color, rotation angle and other properties of the printed text may be specified as additional command options (see set label (p. 85)). The example below will generate a 2-D plot with text labels taken from column 4 of the input file (tc lt 2 is shorthand for textcolor linetype 2, which is green).

```
plot 'datafile' using 1:(0.5 * \$2):4 with labels font "arial,11" tc lt 2
```

The **labels** style can also be used in 3-D plots. In this case four input column specifiers are required, corresponding to X Y Z and text.

```
splot 'datafile' using 1:2:3:4 with labels
```

See also datastrings (p. 21), set style data (p. 106).

40.58.6.14 Lines The lines style connects adjacent points with straight line segments. See also linetype (p. 27), linewidth (p. 107), and linestyle (p. 107).

40.58.6.15 Linespoints The linespoints style does both lines and points, that is, it draws a small symbol at each point and then connects adjacent points with straight line segments. The command set pointsize may be used to change the size of the points. See set pointsize (p. 102) for its usage. linespoints may be abbreviated lp.

40.58.6.16 Points The points style displays a small symbol at each point. The command set pointsize may be used to change the size of the points. See set pointsize (p. 102) for its usage.

40.58.6.17 Steps The steps style is only relevant to 2-d plotting. It connects consecutive points with two line segments: the first from (x1,y1) to (x2,y1) and the second from (x2,y1) to (x2,y2). See also

steps demo.

40.58.6.18 Rgbimage The **rgbimage** style is intended for plotting 2D images and is similar in concept to **image**. See **image** (**p. 113**) for details. The difference is that 5D data (x,y,r,g,b) for **plot** and 6D data (x,y,z,r,g,b) for **splot** describe the coordinates and color components of an image. Currently, color images are only possible when the sampling grid is rectangular and oriented with the view plane. General orientations must be done with filled polygons which only support palette table lookup, not primary colors.

See also image (p. 113).

40.58.6.19 Vectors The 2D **vectors** style draws a vector from (x,y) to (x+xdelta,y+ydelta). Thus it requires four columns of data. It also draws a small arrowhead at the end of the vector. The 3D **vectors** style is similar, but requires six columns of data. splot with vectors is supported only for **set mapping cartesian**. The keywords "with vectors" may be followed by arrow style specifications. See **arrowstyle (p. 105)** for more details.

Example:

```
plot 'file.dat' using 1:2:3:4 with vectors head filled lt 2 splot 'file.dat' using 1:2:3:(1):(1):(1) with vectors filled head lw 2
```

set clip one and set clip two affect vectors drawn in 2D. Please see set clip (p. 70) and arrowstyle (p. 105).

40.58.6.20 Xerrorbars The **xerrorbars** style is only relevant to 2-d data plots. **xerrorbars** is like **dots**, except that a horizontal error bar is also drawn. At each point (x,y), a line is drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to (x+xdelta,y), depending on how many data columns are provided. A tic mark is placed at the ends of the error bar (unless **set bars** is used — see **set bars** (**p. 68**) for details).

40.58.6.21 Xyerrorbars The **xyerrorbars** style is only relevant to 2-d data plots. **xyerrorbars** is like **dots**, except that horizontal and vertical error bars are also drawn. At each point (x,y), lines are drawn from (x,y)-ydelta to (x,y)-ydelta and from (x)-xdelta,(x) to (x)-xdelta,(x) or from (x)-ydelta and (x)-ydelta and from (x)-ydelta and from (x)-ydelta and (

If data are provided in an unsupported mixed form, the **using** filter on the **plot** command should be used to set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then you can use

```
plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars
```

40.58.6.22 Yerrorbars The yerrorbars (or errorbars) style is only relevant to 2-d data plots. yerrorbars is like **points**, except that a vertical error bar is also drawn. At each point (x,y), a line is drawn from (x,y)-ydelta) to (x,y)-ydelta) or from (x,y)-wolve to (x,y)-high), depending on how many data columns are provided. A tic mark is placed at the ends of the error bar (unless **set bars** is used — see **set bars** (**p. 68**) for details). See also

errorbar demo.

40.58.6.23 Xerrorlines The **xerrorlines** style is only relevant to 2-d data plots. **xerrorlines** is like **linespoints**, except that a horizontal error line is also drawn. At each point (x,y), a line is drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to (x+xdelta,y), depending on how many data columns are provided. A tic mark is placed at the ends of the error bar (unless **set bars** is used — see **set bars** (**p. 68**) for details).

40.58.6.24 Xyerrorlines The **xyerrorlines** style is only relevant to 2-d data plots. **xyerrorlines** is like **linespoints**, except that horizontal and vertical error bars are also drawn. At each point (x,y), lines are drawn from (x,y-ydelta) to (x,y+ydelta) and from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow) to (x,yhigh) and from (xlow,y) to (xhigh,y), depending upon the number of data columns provided. A tic mark is placed at the ends of the error bar (unless **set bars** is used — see **set bars** (**p. 68**) for details).

If data are provided in an unsupported mixed form, the **using** filter on the **plot** command should be used to set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then you can use

```
plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines
```

40.58.6.25 Yerrorlines The yerrorlines (or errorlines) style is only relevant to 2-d data plots. yerrorlines is like linespoints, except that a vertical error line is also drawn. At each point (x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta) or from (x,ylow) to (x,yhigh), depending on how many data columns are provided. A tic mark is placed at the ends of the error bar (unless set bars is used — see set bars (p. 68) for details). See also

errorbar demo.

40.59 Surface

The command **set surface** controls the display of surfaces by **splot**.

Syntax:

set surface unset surface show surface

The surface is drawn with the style specified by with, or else the appropriate style, data or function.

Whenever **unset surface** is issued, **splot** will not draw points or lines corresponding to the function or data file points. Contours may still be drawn on the surface, depending on the **set contour** option. **unset surface**; **set contour base** is useful for displaying contours on the grid base. See also **set contour** (p. 73).

40.60 Terminal

gnuplot supports many different graphics devices. Use **set terminal** to tell **gnuplot** what kind of output to generate. Use **set output** to redirect that output to a file or device.

Syntax:

```
set terminal {<terminal-type> | push | pop}
show terminal
```

If <terminal-type> is omitted, **gnuplot** will list the available terminal types. <terminal-type> may be abbreviated.

If both **set terminal** and **set output** are used together, it is safest to give **set terminal** first, because some terminals set a flag which is needed in some operating systems.

Several terminals have many additional options. For example, see png (p. 160), or postscript (p. 161). The options used by a previous invocation set term <term> <options> of a given <term> are remembered, thus subsequent set term <term> does not reset them. This helps in printing, for instance, when switching among different terminals — previous options don't have to be repeated.

The command **set term push** remembers the current terminal including its settings while **set term pop** restores it. This is equivalent to **save term** and **load term**, but without accessing the filesystem. Therefore they can be used to achieve platform independent restoring of the terminal after printing, for instance. After gnuplot's startup, the default terminal or that from **startup** file is pushed automatically. Therefore portable scripts can rely that **set term pop** restores the default terminal on a given platform unless another terminal has been pushed explicitly.

For a complete list of available terminal types, see terminal (p. 133).

40.61 Termoption

The **set termoption** command allows you to change the behaviour of the current terminal without requiring a new **set terminal** command. Only one option can be changed per command, and only a small number of options can be changed this way. Currently the only options accepted are

```
set termoption {no}enhanced
set termoption font "<fontname>{,<fontsize>}"
```

40.62 Tics

The **set tics** command can be used to change the tics to be drawn outwards.

Syntax:

```
set tics {<direction>}
show tics
```

where <direction> may be in (the default) or out.

See also **set xtics** (p. 123) for more control of major (labelled) tic marks and **set mxtics** for control of minor tic marks.

40.63 Ticslevel

Using **splot**, one can adjust the relative height of the vertical (Z) axis using **set ticslevel**. The numeric argument provided specifies the location of the bottom of the scale (as a fraction of the z-range) above the xy-plane. The default value is 0.5. Negative values are permitted, but tic labels on the three axes may overlap.

To place the xy-plane at a position 'pos' on the z-axis, **ticslevel** should be set equal to (pos - zmin) / (zmin - zmax).

Syntax:

```
set ticslevel {<level>}
show tics
```

See also set view (p. 119).

40.64 Ticscale

The size of the tic marks can be adjusted with **set ticscale**.

Syntax:

```
set ticscale {<major> {<minor>}}
show tics
```

If <minor> is not specified, it is 0.5*<major>. The default size is 1.0 for major tics and 0.5 for minor tics. Note that it is possible to have the tic marks pointing outward by specifying a negative size.

40.65 Timestamp

The command **set timestamp** places the time and date of the plot in the left margin.

Syntax:

The format string allows you to choose the format used to write the date and time. Its default value is what asctime() uses: "%a %b %d %H:%M:%S %Y" (weekday, month name, day of the month, hours, minutes, seconds, four-digit year). With **top** or **bottom** you can place the timestamp at the top or bottom of the left margin (default: bottom). **rotate** lets you write the timestamp vertically, if your terminal supports vertical text. The constants <xoff> and <yoff> are offsets from the default position given in character screen coordinates. is used to specify the font with which the time is to be written.

The abbreviation **time** may be used in place of **timestamp**.

Example:

```
set timestamp "%d/%m/%y %H:%M" 80,-2 "Helvetica"
```

See set timefmt (p. 117) for more information about time format strings.

40.66 Timefmt

This command applies to timeseries where data are composed of dates/times. It has no meaning unless the command **set xdata time** is given also.

Syntax:

```
set timefmt "<format string>"
show timefmt
```

The string argument tells **gnuplot** how to read timedata from the datafile. The valid formats are:

Time Series timedata Format Specifiers		
Format	Explanation	
%d	day of the month, 1–31	
%m	month of the year, 1–12	
%у	year, 0–99	
%Y	year, 4-digit	
%j	day of the year, $1-365$	
%Н	hour, 0–24	
%M	minute, 0–60	
%s	seconds since the Unix epoch (1970-01-01 00:00 UTC)	
%S	second, 0–60	
%b	three-character abbreviation of the name of the month	
%В	name of the month	

Any character is allowed in the string, but must match exactly. \t (tab) is recognized. Backslash-octals (\nnn) are converted to char. If there is no separating character between the time/date elements, then

%d, %m, %y, %H, %M and %S read two digits each, %Y reads four digits and %j reads three digits. %b requires three characters, and %B requires as many as it needs.

Spaces are treated slightly differently. A space in the string stands for zero or more whitespace characters in the file. That is, "%H %M" can be used to read "1220" and "12 20" as well as "12 20".

Each set of non-blank characters in the timedata counts as one column in the **using n:n** specification. Thus 11:11 25/12/76 21.0 consists of three columns. To avoid confusion, **gnuplot** requires that you provide a complete **using** specification if your file contains timedata.

Since **gnuplot** cannot read non-numerical text, if the date format includes the day or month in words, the format string must exclude this text. But it can still be printed with the "%a", "%A", "%b", or "%B" specifier: see **set format** (**p. 78**) for more details about these and other options for printing timedata. (**gnuplot** will determine the proper month and weekday from the numerical values.)

See also set xdata (p. 120) and Time/date (p. 34) for more information.

Example:

```
set timefmt "%d/%m/%Y\t%H:%M"
```

tells **gnuplot** to read date and time separated by tab. (But look closely at your data — what began as a tab may have been converted to spaces somewhere along the line; the format string must match what is actually in the file.) See also

time data demo.

40.67 Title

The set title command produces a plot title that is centered at the top of the plot. set title is a special case of set label.

Syntax:

If <offset> is specified the title is moved by the given offset where <offset> is specified by either x,y or x,y,z, and may be preceded by **first**, **second**, **graph**, **screen**, or **character** to select the coordinate system. See **coordinates** (**p. 20**) for details. By default, the **character** coordinate system is used. For example, "set title 0,-1" will change only the y offset of the title, moving the title down by roughly the height of one character.

 is used to specify the font with which the title is to be written; the units of the font <size> depend upon which terminal is used.

textcolor lt $\langle n \rangle$ sets the text color to that of line type $\langle n \rangle$.

noenhanced requests that the title not be processed by the enhanced text mode parser, even if enhanced text mode is currently active.

set title with no parameters clears the title.

See syntax (p. 33) for details about the processing of backslash sequences and the distinction between single- and double-quotes.

40.68 Tmargin

The command set tmargin sets the size of the top margin. Please see set margin (p. 89) for details.

40.69 Trange

The **set trange** command sets the parametric range used to compute x and y values when in parametric or polar modes. Please see **set xrange** (p. 122) for details.

40.70 Urange

The **set urange** and **set vrange** commands set the parametric ranges used to compute x, y, and z values when in **splot** parametric mode. Please see **set xrange** (p. 122) for details.

40.71 Variables

The **show variables** command lists all user-defined variables and their values.

Syntax:

show variables

40.72 Version

The **show version** command lists the version of gnuplot being run, its last modification date, the copyright holders, and email addresses for the FAQ, the gnuplot-info mailing list, and reporting bugs—in short, the information listed on the screen when the program is invoked interactively.

Syntax:

```
show version {long}
```

When the **long** option is given, it also lists the operating system, the compilation options used when **gnuplot** was installed, the location of the help file, and (again) the useful email addresses.

40.73 View

The **set view** command sets the viewing angle for **splots**. It controls how the 3-d coordinates of the plot are mapped into the 2-d screen space. It provides controls for both rotation and scaling of the plotted data, but supports orthographic projections only. It supports both 3D projection or orthogonal 2D projection into a 2D plot-like map.

Syntax:

```
set view { <rot_x>{,{<rot_z>}{,{<scale>}{,<scale_z>}}} | map }
show view
```

where <rot_x> and <rot_z> control the rotation angles (in degrees) in a virtual 3-d coordinate system aligned with the screen such that initially (that is, before the rotations are performed) the screen horizontal axis is x, screen vertical axis is y, and the axis perpendicular to the screen is z. The first rotation applied is <rot_x> around the x axis. The second rotation applied is <rot_z> around the new z axis.

Command **set view map** is used to represent the drawing as a map. It can be used for **contour** plots, or for color **pm3d** maps. In the latter, take care that you properly use **zrange** and **cbrange** for input data point filtering and color range scaling, respectively.

<rp><rot_x> is bounded to the [0:180] range with a default of 60 degrees, while <rot_z> is bounded to the [0:360] range with a default of 30 degrees. <scale> controls the scaling of the entire **splot**, while <scale_z> scales the z axis only. Both scales default to 1.0.

Examples:

```
set view 60, 30, 1, 1 set view ,,0.5
```

The first sets all the four default values. The second changes only scale, to 0.5.

See also set ticslevel (p. 116).

40.74 Vrange

The **set urange** and **set vrange** commands set the parametric ranges used to compute x, y, and z values when in **splot** parametric mode. Please see **set xrange** (p. 122) for details.

40.75 X2data

The set x2data command sets data on the x2 (top) axis to timeseries (dates/times). Please see set xdata (p. 120).

40.76 X2dtics

The **set x2dtics** command changes tics on the x2 (top) axis to days of the week. Please see **set xdtics** (p. 121) for details.

40.77 X2label

The set x2label command sets the label for the x2 (top) axis. Please see set xlabel (p. 121).

40.78 X2mtics

The **set x2mtics** command changes tics on the x2 (top) axis to months of the year. Please see **set xmtics** (p. 122) for details.

40.79 X2range

The **set x2range** command sets the horizontal range that will be displayed on the x2 (top) axis. Please see **set xrange** (p. 122) for details.

40.80 X2tics

The **set x2tics** command controls major (labelled) tics on the x2 (top) axis. Please see **set xtics** (p. 123) for details.

40.81 X2zeroaxis

The **set x2zeroaxis** command draws a line at the origin of the x2 (top) axis (y2 = 0). For details, please see **set zeroaxis** (p. 127).

40.82 Xdata

This command sets the datatype on the x axis to time/date. A similar command does the same thing for each of the other axes.

Syntax:

```
set xdata {time}
show xdata
```

The same syntax applies to ydata, zdata, x2data, y2data and cbdata.

The **time** option signals that the datatype is indeed time/date. If the option is not specified, the datatype reverts to normal.

See set timefmt (p. 117) to tell gnuplot how to read date or time data. The time/date is converted to seconds from start of the century. There is currently only one timefmt, which implies that all the time/date columns must conform to this format. Specification of ranges should be supplied as quoted strings according to this format to avoid interpretation of the time/date as an expression.

The function 'strftime' (type "man strftime" on unix to look it up) is used to print tic-mark labels. **gnuplot** tries to figure out a reasonable format for this unless the **set format x** "**string**" has supplied something that does not look like a decimal format (more than one '%' or neither %f nor %g).

See also Time/date (p. 34) for more information.

40.83 Xdtics

The **set xdtics** commands converts the x-axis tic marks to days of the week where 0=Sun and 6=Sat. Overflows are converted modulo 7 to dates. **set noxdtics** returns the labels to their default values. Similar commands do the same things for the other axes.

Syntax:

```
set xdtics
unset xdtics
show xdtics
```

The same syntax applies to ydtics, zdtics, x2dtics, y2dtics and cbdtics.

See also the **set format** (p. 78) command.

40.84 Xlabel

show xlabel

The **set xlabel** command sets the x axis label. Similar commands set labels on the other axes.

The same syntax applies to x2label, ylabel, y2label, zlabel and cblabel.

If <offset> is specified the label is moved by the given offset where <offset> is specified by either x,y or x,y,z, and may be preceded by **first**, **second**, **graph**, **screen**, or **character** to select the coordinate system. See **coordinates** (**p. 20**) for details. By default, the **character** coordinate system is used. For example, "**set xlabel -1,0**" will change only the x offset of the title, moving the label roughly one character width to the left. The size of a character depends on both the font and the terminal.

 is used to specify the font in which the label is written; the units of the font <size> depend upon which terminal is used.

textcolor lt <**n**> sets the text color to that of line type <n>.

noenhanced requests that the label text not be processed by the enhanced text mode parser, even if enhanced text mode is currently active.

To clear a label, put no options on the command line, e.g., "set y2label".

The default positions of the axis labels are as follows:

xlabel: The x-axis label is centered below the bottom axis.

ylabel: The position of the y-axis label depends on the terminal, and can be one of the following three positions:

- 1. Horizontal text flushed left at the top left of the plot. Terminals that cannot rotate text will probably use this method. If **set x2tics** is also in use, the ylabel may overwrite the left-most x2tic label. This may be remedied by adjusting the ylabel position or the left margin.
- 2. Vertical text centered vertically at the left of the plot. Terminals that can rotate text will probably use this method.
- 3. Horizontal text centered vertically at the left of the plot. The EEPIC, LaTeX and TPIC drivers use this method. The EEPIC driver will produce a stack of characters so as not to overwrite the plot. With other drivers (such as LaTeX and TPIC), the user probably has to insert line breaks using \\ to prevent the ylabel from overwriting the plot.

zlabel: The z-axis label is centered along the z axis and placed in the space above the grid level.

cblabel: The color box axis label is centered along the box and placed below or right according to horizontal or vertical color box gradient.

y2label: The y2-axis label is placed to the right of the y2 axis. The position is terminal-dependent in the same manner as is the y-axis label.

x2label: The x2-axis label is placed above the top axis but below the plot title. It is also possible to create an x2-axis label by using new-line characters to make a multi-line plot title, e.g.,

```
set title "This is the title\n is the x2label"
```

Note that double quotes must be used. The same font will be used for both lines, of course.

If you are not satisfied with the default position of an axis label, use **set label** instead—that command gives you much more control over where text is placed.

Please see **syntax** (**p. 33**) for further information about backslash processing and the difference between single- and double-quoted strings.

40.85 Xmtics

The **set xmtics** command converts the x-axis tic marks to months of the year where 1=Jan and 12=Dec. Overflows are converted modulo 12 to months. The tics are returned to their default labels by **unset xmtics**. Similar commands perform the same duties for the other axes.

Syntax:

```
set xmtics
unset xmtics
show xmtics
```

The same syntax applies to **x2mtics**, **ymtics**, **y2mtics**, **zmtics** and **cbmtics**.

See also the **set format** (p. 78) command.

40.86 Xrange

The **set xrange** command sets the horizontal range that will be displayed. A similar command exists for each of the other axes, as well as for the polar radius r and the parametric variables t, u, and v.

Syntax:

where <min> and <max> terms are constants, expressions or an asterisk to set autoscaling. If the data are time/date, you must give the range as a quoted string according to the **set timefmt** format. Any value omitted will not be changed.

The same syntax applies to **yrange**, **zrange**, **x2range**, **y2range**, **cbrange**, **rrange**, **trange**, **urange** and **vrange**.

The **reverse** option reverses the direction of the axis, e.g., **set xrange** [0:1] **reverse** will produce an axis with 1 on the left and 0 on the right. This is identical to the axis produced by **set xrange** [1:0], of course. **reverse** is intended primarily for use with **autoscale**.

The **writeback** option essentially saves the range found by **autoscale** in the buffers that would be filled by **set xrange**. This is useful if you wish to plot several functions together but have the range determined by only some of them. The **writeback** operation is performed during the **plot** execution, so it must be specified before that command. To restore, the last saved horizontal range use **set xrange restore**. For example,

```
set xrange [-10:10]
set yrange [] writeback
plot sin(x)
set yrange restore
replot x/2
```

results in a yrange of [-1:1] as found only from the range of $\sin(x)$; the [-5:5] range of x/2 is ignored. Executing **show yrange** after each command in the above example should help you understand what is going on.

In 2-d, **xrange** and **yrange** determine the extent of the axes, **trange** determines the range of the parametric variable in parametric mode or the range of the angle in polar mode. Similarly in parametric 3-d, **xrange**, **yrange**, and **zrange** govern the axes and **urange** and **vrange** govern the parametric variables

In polar mode, **rrange** determines the radial range plotted. <rmin> acts as an additive constant to the radius, whereas <rmax> acts as a clip to the radius — no point with radius greater than <rmax> will be plotted. **xrange** and **yrange** are affected — the ranges can be set as if the graph was of r(t)-rmin, with rmin added to all the labels.

Any range may be partially or totally autoscaled, although it may not make sense to autoscale a parametric variable unless it is plotted with data.

Ranges may also be specified on the **plot** command line. A range given on the plot line will be used for that single **plot** command; a range given by a **set** command will be used for all subsequent plots that do not specify their own ranges. The same holds true for **splot**.

Examples:

```
To set the xrange to the default:
```

```
set xrange [-10:10]
```

To set the yrange to increase downwards:

```
set yrange [10:-10]
```

To change zmax to 10 without affecting zmin (which may still be autoscaled):

```
set zrange [:10]
```

To autoscale xmin while leaving xmax unchanged:

```
set xrange [*:]
```

40.87 Xtics

Fine control of the major (labelled) tics on the x axis is possible with the **set xtics** command. The tics may be turned off with the **unset xtics** command, and may be turned on (the default state) with **set xtics**. Similar commands control the major tics on the y, z, x2 and y2 axes.

Syntax:

The same syntax applies to ytics, ztics, x2tics, y2tics and cbtics.

axis or border tells gnuplot to put the tics (both the tics themselves and the accompanying labels) along the axis or the border, respectively. If the axis is very close to the border, the axis option will move the tic labels to outside the border. The relevant margin settings will usually be sized badly by the automatic layout algorithm in this case.

mirror tells **gnuplot** to put unlabelled tics at the same positions on the opposite border. **nomirror** does what you think it does.

rotate asks **gnuplot** to rotate the text through 90 degrees, which will be done if the terminal driver in use supports text rotation. **norotate** cancels this. **rotate** by <ang> asks for rotation by <ang> degrees, supported by some terminal types.

The defaults are **border mirror norotate** for tics on the x and y axes, and **border nomirror norotate** for tics on the x2 and y2 axes. For the z axis, the {axis | border} option is not available and the default is **nomirror**. If you do want to mirror the z-axis tics, you might want to create a bit more room for them with **set border**.

The <offset> is specified by either x,y or x,y,z, and may be preceded by first, second, graph, screen, or character to select the coordinate system. <offset> is the offset of the tics texts from their default positions, while the default coordinate system is character. See coordinates (p. 20) for details. nooffset switches off the offset.

Example:

Move xtics more closely to the plot.

```
set xtics offset 0,graph 0.05
```

set xtics with no options restores the default border or axis if xtics are being displayed; otherwise it has no effect. Any previously specified tic frequency or position {and labels} are retained.

Positions of the tics are calculated automatically by default or if the **autofreq** option is given; otherwise they may be specified in either of two forms:

The implicit <start>, <incr>, <end> form specifies that a series of tics will be plotted on the axis between the values <start> and <end> with an increment of <incr>. If <end> is not given, it is assumed to be infinity. The increment may be negative. If neither <start> nor <end> is given, <start> is assumed to be negative infinity, <end> is assumed to be positive infinity, and the tics will be drawn at integral multiples of <incr>. If the axis is logarithmic, the increment will be used as a multiplicative factor.

The set grid options 'front', 'back' and 'layerdefault' affect the drawing order of the xtics, too.

Examples:

```
Make tics at 0, 0.5, 1, 1.5, ..., 9.5, 10.
set xtics 0, .5, 10

Make tics at ..., -10, -5, 0, 5, 10, ...
set xtics 5

Make tics at 1, 100, 1e4, 1e6, 1e8.
set logscale x; set xtics 1,100,1e8
```

The explicit ("<label>" <pos> <level>, ...) form allows arbitrary tic positions or non-numeric tic labels. In this form, the tics do not need to be listed in numerical order. Each tic has a position, optionally with a label. Note that the label is a string enclosed by quotes. It may be a constant string, such as "hello", may contain formatting information for converting the position into its label, such as "%3f clients", or may be empty, "". See set format (p. 78) for more information. If no string is given, the default label (numerical) is used.

An explicit tic mark has a third parameter, the "level". The default is level 0, a major tic. A level of 1 generates a minor tic. If the level is specified, then the label must also be supplied.

Examples:

```
set xtics ("low" 0, "medium" 50, "high" 100) set xtics (1,2,4,8,16,32,64,128,256,512,1024) set ytics ("bottom" 0, "" 10, "top" 20) set ytics ("bottom" 0, "" 10 1, "top" 20)
```

In the second example, all tics are labelled. In the third, only the end tics are labelled. In the fourth, the unlabeled tic is a minor tic.

However they are specified, tics will only be plotted when in range.

Format (or omission) of the tic labels is controlled by **set format**, unless the explicit text of a labels is included in the **set xtics** (<label>) form.

Minor (unlabelled) tics can be added by the **set mxtics** command.

In case of timeseries data, position values must be given as quoted dates or times according to the format **timefmt**. If the <start>, <incr>, <end> form is used, <start> and <end> must be given according to **timefmt**, but <incr> must be in seconds. Times will be written out according to the format given on **set format**, however.

Examples:

```
set xdata time
set timefmt "%d/%m"
set format x "%b %d"
set xrange ["01/12":"06/12"]
set xtics "01/12", 172800, "05/12"

set xdata time
set timefmt "%d/%m"
set format x "%b %d"
set xrange ["01/12":"06/12"]
set xtics ("01/12", "" "03/12", "05/12")
```

Both of these will produce tics "Dec 1", "Dec 3", and "Dec 5", but in the second example the tic at "Dec 3" will be unlabelled.

40.88 Xzeroaxis

The set xzeroaxis command draws a line at y = 0. For details, please see set zeroaxis (p. 127).

40.89 Y2data

The set y2data command sets y2 (right-hand) axis data to timeseries (dates/times). Please see set xdata (p. 120).

40.90 Y2dtics

The **set y2dtics** command changes tics on the y2 (right-hand) axis to days of the week. Please see **set xdtics** (p. 121) for details.

40.91 Y2label

The set y2label command sets the label for the y2 (right-hand) axis. Please see set xlabel (p. 121).

40.92 Y2mtics

The set y2mtics command changes tics on the y2 (right-hand) axis to months of the year. Please see set xmtics (p. 122) for details.

40.93 Y2range

The **set y2range** command sets the vertical range that will be displayed on the y2 (right-hand) axis. Please see **set xrange** (p. 122) for details.

40.94 Y2tics

The **set y2tics** command controls major (labelled) tics on the y2 (right-hand) axis. Please see **set xtics** (p. 123) for details.

40.95 Y2zeroaxis

The **set y2zeroaxis** command draws a line at the origin of the y2 (right-hand) axis (x2 = 0). For details, please see **set zeroaxis** (**p. 127**).

40.96 Ydata

The set ydata commands sets y-axis data to timeseries (dates/times). Please see set xdata (p. 120).

40.97 Ydtics

The set ydtics command changes tics on the y axis to days of the week. Please see set xdtics (p. 121) for details.

40.98 Ylabel

This command sets the label for the y axis. Please see set xlabel (p. 121).

40.99 Ymtics

The **set ymtics** command changes tics on the y axis to months of the year. Please see **set xmtics** (p. 122) for details.

40.100 Yrange

The **set yrange** command sets the vertical range that will be displayed on the y axis. Please see **set xrange** (p. 122) for details.

40.101 Ytics

The **set ytics** command controls major (labelled) tics on the y axis. Please see **set xtics** (p. 123) for details.

40.102 Yzeroaxis

The set yzeroaxis command draws a line at x = 0. For details, please see set zeroaxis (p. 127).

40.103 Zdata

The set zdata command sets zaxis data to timeseries (dates/times). Please see set xdata (p. 120).

40.104 Zdtics

The set zdtics command changes tics on the z axis to days of the week. Please see set xdtics (p. 121) for details.

40.105 Cbdata

Set color box axis data to timeseries (dates/times). Please see set xdata (p. 120).

40.106 Cbdtics

The **set cbdtics** command changes tics on the color box axis to days of the week. Please see **set xdtics** (p. 121) for details.

40.107 Zero

The **zero** value is the default threshold for values approaching 0.0.

Syntax:

```
set zero <expression>
show zero
```

gnuplot will not plot a point if its imaginary part is greater in magnitude than the **zero** threshold. This threshold is also used in various other parts of **gnuplot** as a (crude) numerical-error threshold. The default **zero** value is 1e-8. **zero** values larger than 1e-3 (the reciprocal of the number of pixels in a typical bitmap display) should probably be avoided, but it is not unreasonable to set **zero** to 0.0.

40.108 Zeroaxis

The x axis may be drawn by **set xzeroaxis** and removed by **unset xzeroaxis**. Similar commands behave similarly for the y, x2, and y2 axes.

Syntax:

By default, these options are off. The selected zero axis is drawn with a line of type e_type> and width e_width> (if supported by the terminal driver currently in use), or a user-defined style e_style>.

If no linetype is specified, any zero axes selected will be drawn using the axis linetype (linetype 0).

set zeroaxis is equivalent to set xzeroaxis; set yzeroaxis. set nozeroaxis is equivalent to unset xzeroaxis; unset yzeroaxis.

Examples:

To simply have the y=0 axis drawn visibly:

```
set xzeroaxis
```

If you want a thick line in a different color or pattern, instead:

```
set xzeroaxis linetype 3 linewidth 2.5
```

40.109 Zlabel

This command sets the label for the z axis. Please see set xlabel (p. 121).

40.110 Zmtics

The **set zmtics** command changes tics on the z axis to months of the year. Please see **set xmtics** (p. 122) for details.

128 gnuplot 4.1 41 SHELL

40.111 Zrange

The **set zrange** command sets the range that will be displayed on the z axis. The zrange is used only by **splot** and is ignored by **plot**. Please see **set xrange** (**p. 122**) for details.

40.112 Ztics

The set ztics command controls major (labelled) tics on the z axis. Please see set xtics (p. 123) for details.

40.113 Cblabel

This command sets the label for the color box axis. Please see set xlabel (p. 121).

40.114 Cbmtics

The **set cbmtics** command changes tics on the color box axis to months of the year. Please see **set xmtics** (p. 122) for details.

40.115 Cbrange

The **set cbrange** command sets the range of z-values which are colored by **pm3d** mode of **splot**. If the cb-axis is autoscaled, then the **pm3d** / **palette** range is taken from **zrange**.

Please see set xrange (p. 122) for details on set cbrange (p. 128) syntax.

40.116 Cbtics

The **set cbtics** command controls major (labelled) tics on the color box axis. Please see **set xtics** (p. 123) for details.

41 Shell

The **shell** command spawns an interactive shell. To return to **gnuplot**, type **logout** if using VMS, **exit** or the END-OF-FILE character if using Unix, **endcli** if using AmigaOS, or **exit** if using MS-DOS or OS/2.

There are two ways of spawning a shell command: using **system** command or via ! (\$ if using VMS). The former command takes a string as a parameter and thus it can be used anywhere among other gnuplot commands, while the latter syntax requires to be the only command on the line. Control will return immediately to **gnuplot** after this command is executed. For example, in AmigaOS, MS-DOS or OS/2,

```
! dir
or
system "dir"
```

prints a directory listing and then returns to **gnuplot**.

Other examples of the former syntax:

```
system "date"; set time; plot "a.dat"
print=1; if (print) replot; set out; system "lpr x.ps"
```

On an Atari, the ! command first checks whether a shell is already loaded and uses it, if available. This is practical if **gnuplot** is run from **gulam**, for example.

42 Splot

splot is the command for drawing 3-d plots (well, actually projections on a 2-d surface, but you knew that). It can create a plot from functions or a data file in a manner very similar to the **plot** command.

See **plot** (**p. 45**) for features common to the **plot** (**p. 45**) command; only differences are discussed in detail here. Note specifically **plot**'s **axes** option is not available for **splot**.

Syntax:

where either a <function> or the name of a data file enclosed in quotes is supplied. The function can be a mathematical expression, or a triple of mathematical expressions in parametric mode.

By default **splot** draws the xy plane completely below the plotted data. The offset between the lowest ztic and the xy plane can be changed by **set ticslevel**. The orientation of a **splot** projection is controlled by **set view**. See **set view** (**p. 119**) and **set ticslevel** (**p. 116**) for more information.

The syntax for setting ranges on the **splot** command is the same as for **plot**. In non-parametric mode, the order in which ranges must be given is **xrange**, **yrange**, and **zrange**. In parametric mode, the order is **urange**, **vrange**, **yrange**, and **zrange**.

The **title** option is the same as in **plot**. The operation of **with** is also the same as in **plot**, except that the plotting styles available to **splot** are limited to **lines**, **points**, **linespoints**, **dots**, and **impulses**; the error-bar capabilities of **plot** are not available for **splot**.

The **datafile** options have more differences.

See also show plot (p. 94).

42.1 Data-file

As for **plot**, discrete data contained in a file can be displayed by specifying the name of the data file, enclosed in quotes, on the **splot** command line.

Syntax:

The special filenames "" and "-" are permitted, as in **plot**.

In brief, **binary** and **matrix** indicate that the data are in a special form, **index** selects which data sets in a multi-data-set file are to be plotted, **every** specifies which datalines (subsets) within a single data set are to be plotted, and **using** determines how the columns within a single record are to be interpreted.

The options **index** and **every** behave the same way as with **plot**; **using** does so also, except that the **using** list must provide three entries instead of two.

The **plot** options **thru** and **smooth** are not available for **splot**, but **cntrparam** and **dgrid3d** provide limited smoothing capabilities.

Data file organization is essentially the same as for **plot**, except that each point is an (x,y,z) triple. If only a single value is provided, it will be used for z, the datablock number will be used for y, and the index of the data point in the datablock will be used for x. If two or four values are provided, **gnuplot** uses the last value for calculating the color in pm3d plots. Three values are interpreted as an (x,y,z) triple. Additional values are generally used as errors, which can be used by **fit**.

Single blank records separate datablocks in a **splot** datafile; **splot** treats datablocks as the equivalent of function y-isolines. No line will join points separated by a blank record. If all datablocks contain the

same number of points, **gnuplot** will draw cross-isolines between datablocks, connecting corresponding points. This is termed "grid data", and is required for drawing a surface, for contouring (**set contour**) and hidden-line removal (**set hidden3d**). See also **splot grid_data (p. 131)**.

It is no longer necessary to specify **parametric** mode for three-column **splots**.

42.1.1 Binary matrix

Gnuplot can read matrix binary files by use of the option **binary** appearing without keyword qualifications unique to general binary, i.e., **array**, **record**, **format**, or **filetype**. Other general binary keywords for translation should also apply to matrix binary. (See **binary general (p. 47)** for more details.)

In previous versions, **gnuplot** dynamically detected binary data files. It is now necessary to specify the keyword **binary** directly after the filename.

Single precision floats are stored in a binary file as follows:

```
<N+1> <y0> <y1> <y2> ... <yN>
  <x0> <z0,0> <z0,1> <z0,2> ... <z0,N>
  <x1> <z1,0> <z1,1> <z1,2> ... <z1,N>
  : : : : : ::
```

which are converted into triplets:

```
<x0> <y0> <z0,0>
<x0> <y1> <z0,1>
<x0> <y2> <z0,2>
:
:
<x0> <y2> <z0,2>
:
:
<x0> <yN> <z0,N>
<x1> <y0> <z1,0>
<x1> <y1> <z1,1>
:
:
:
```

These triplets are then converted into **gnuplot** iso-curves and then **gnuplot** proceeds in the usual manner to do the rest of the plotting.

A collection of matrix and vector manipulation routines (in C) is provided in **binary.c**. The routine to write binary data is

```
int fwrite_matrix(file,m,nrl,nrl,ncl,nch,row_title,column_title)
```

An example of using these routines is provided in the file **bf_test.c**, which generates binary files for the demo file **demo/binary.dem**.

The **index** keyword is not supported, since the file format allows only one surface per file. The **every** and **using** filters are supported. **using** operates as if the data were read in the above triplet form.

See also binary general (p. 47) and

```
Binary File Splot Demo.
```

42.1.2 Example datafile

A simple example of plotting a 3-d data file is

```
splot 'datafile.dat'
```

where the file "datafile.dat" might contain:

```
# The valley of the Gnu.
```

```
0 0 10
```

0 1 10

0 2 10

Note that "datafile.dat" defines a 4 by 3 grid (4 rows of 3 points each). Rows (datablocks) are separated by blank records.

Note also that the x value is held constant within each dataline. If you instead keep y constant, and plot with hidden-line removal enabled, you will find that the surface is drawn 'inside-out'.

Actually for grid data it is not necessary to keep the x values constant within a datablock, nor is it necessary to keep the same sequence of y values. **gnuplot** requires only that the number of points be the same for each datablock. However since the surface mesh, from which contours are derived, connects sequentially corresponding points, the effect of an irregular grid on a surface plot is unpredictable and should be examined on a case-by-case basis.

42.1.3 Matrix_ascii

The **matrix** flag indicates that the ASCII data are stored in matrix format. The z-values are read in a row at a time, i. e.,

```
z11 z12 z13 z14 ...
z21 z22 z23 z24 ...
z31 z32 z33 z34 ...
```

and so forth. The row and column indices are used for the x- and y-values.

A blank line or comment line ends the matrix, and starts a new surface mesh. You can select among the meshes inside a file by the **index** option to the **splot** command, as usual.

42.1.4 Matrix

The matrix flag indicates that the file data (ASCII or binary) are stored in matrix format. The formats are slightly different amongst these two. For details, see matrix ascii (p. 131) or matrix binary (p. 130).

42.2 Grid_data

The 3D routines are designed for points in a grid format, with one sample, datapoint, at each mesh intersection; the datapoints may originate from either evaluating a function, see **set isosamples** (**p. 83**), or reading a datafile, see **splot datafile** (**p. 129**). The term "isoline" is applied to the mesh lines for both functions and data. Note that the mesh need not be rectangular in x and y, as it may be parameterized in u and v, see **set isosamples** (**p. 83**).

However, **gnuplot** does not require that format. In the case of functions, 'samples' need not be equal to 'isosamples', i.e., not every x-isoline sample need intersect a y-isoline. In the case of data files, if there are an equal number of scattered data points in each datablock, then "isolines" will connect the points in a datablock, and "cross-isolines" will connect the corresponding points in each datablock to generate a "surface". In either case, contour and hidden3d modes may give different plots than if the points were in the intended format. Scattered data can be converted to a {different} grid format with **set dgrid3d**.

The contour code tests for z intensity along a line between a point on a y-isoline and the corresponding point in the next y-isoline. Thus a **splot** contour of a surface with samples on the x-isolines that do not coincide with a y-isoline intersection will ignore such samples. Try:

```
set xrange [-pi/2:pi/2]; set yrange [-pi/2:pi/2]
set style function lp
set contour
set isosamples 10,10; set samples 10,10;
splot cos(x)*cos(y)
set samples 4,10; replot
set samples 10,4; replot
```

42.3 Splot_overview

splot can display a surface as a collection of points, or by connecting those points. As with plot, the points may be read from a data file or result from evaluation of a function at specified intervals, see set isosamples (p. 83). The surface may be approximated by connecting the points with straight line segments, see set surface (p. 115), in which case the surface can be made opaque with set hidden3d. The orientation from which the 3d surface is viewed can be changed with set view.

Additionally, for points in a grid format, **splot** can interpolate points having a common amplitude (see **set contour (p. 73)**) and can then connect those new points to display contour lines, either directly with straight-line segments or smoothed lines (see **set cntrparam (p. 70)**). Functions are already evaluated in a grid format, determined by **set isosamples** and **set samples**, while file data must either be in a grid format, as described in **data-file**, or be used to generate a grid (see **set dgrid3d (p. 76)**).

Contour lines may be displayed either on the surface or projected onto the base. The base projections of the contour lines may be written to a file, and then read with **plot**, to take advantage of **plot**'s additional formatting capabilities.

43 System

system spawns shell to execute a command. Please type help shell for more details.

44 Test

This command graphically tests or presents terminal and palette capabilities.

Syntax:

```
test {terminal | palette [rgb|rbg|grb|gbr|brg|bgr]}
```

test or test terminal creates a display of line and point styles and other useful things appropriate for and supported by the terminal you are just using.

test palette draws graphically profiles R(z),G(z),B(z), where 0 <= z <= 1, as calculated by the current color palette. In other words, it is a beautiful plot you would have to do yourself with the result of show palette palette 256 float. The optional parameter, a permutation of letters rgb, determines the sequence of r,g,b profiles drawn one after the other — try this yourself for set palette gray. The default sequence is rgb.

45 Unset

Options set using the **set** command may be returned to their default state by issuing the corresponding **unset** command.

Example:

```
set xtics mirror rotate by -45 0,10,100 ... unset xtics
```

46 Update

This command writes the current values of the fit parameters into the given file, formatted as an initial-value file (as described in the **fit**section). This is useful for saving the current values for later use or for restarting a converged or stopped fit.

Syntax:

```
update <filename> {<filename>}
```

If a second filename is supplied, the updated values are written to this file, and the original parameter file is left unmodified.

Otherwise, if the file already exists, **gnuplot** first renames it by appending **.old** and then opens a new file. That is, "**update 'fred'**" behaves the same as "**!rename fred fred.old; update 'fred.old' 'fred'**". [On DOS and other systems that use the twelve-character "filename.ext" naming convention, "ext" will be "**old**" and "filename" will be related (hopefully recognizably) to the initial name. Renaming is not done at all on VMS systems, since they use file-versioning.]

Please see fit (p. 36) for more information.

Part III

Terminal types

47 Terminal

Gnuplot supports a large number of output formats. These are selected by choosing an appropriate terminal type, possibly with additional modifying options. See set terminal (p. 115).

This document may describe terminal types that are not available to you because they were not configured or installed on your system. To see a list of terminals available on a particular gnuplot installation, type 'set terminal' with no modifiers.

47.1 Aed767

The aed512 and aed767 terminal drivers support AED graphics terminals. The two drivers differ only in their horizontal ranges, which are 512 and 768 pixels, respectively. Their vertical range is 575 pixels. There are no options for these drivers.

47.2 Aifm

Several options may be set in **aifm** — the Adobe Illustrator 3.0+ driver.

Syntax:

```
set terminal aifm {<color>} {"<fontname>"} {<fontsize>}
```

<color> is either **color** or **monochrome**; "<fontname>" is the name of a valid PostScript font; <fontsize> is the size of the font in PostScript points, before scaling by the **set size** command. Selecting **default** sets all options to their default values: **monochrome**, "Times-Roman", and 14pt.

Since AI does not really support multiple pages, multiple graphs will be drawn directly on top of one another. However, each graph will be grouped individually, making it easy to separate them inside AI (just pick them up and move them).

Examples:

```
set term aifm
set term aifm 22
set size 0.7,1.4; set term aifm color "Times-Roman" 14
```

47.3 Amiga

The amiga terminal, for Commodore Amiga computers, allows the user to plot either to a screen (default), or, if Kickstart 3.0 or higher is installed, to a window on the current public screen. The font and its size can also be selected.

Syntax:

```
set terminal amiga {screen | window} {"<fontname>"} {<fontsize>}
```

The default font is 8-point "topaz".

The screen option uses a virtual screen, so it is possible that the graph will be larger than the screen.

47.4 Apollo

The **apollo** terminal driver supports the Apollo Graphics Primitive Resource with rescaling after window resizing. It has no options.

If a fixed-size window is desired, the **gpr** terminal may be used instead.

47.5 Aqua

This terminal relies on AquaTerm.app for display on Mac OS X.

Syntax:

where $\langle n \rangle$ is the number of the window to draw in (default is 0), \langle wintitle \rangle is the name shown in the title bar (default "Figure $\langle n \rangle$ "), $\langle x \rangle \langle y \rangle$ is the size of the plot (default is 846x594 pt = 11.75x8.25 in).

Use <fontface> to specify the font to use (default is "Times-Roman"), <fontzise> sets the font size (default is 14.0 pt).

The aqua terminal support enhanced text mode (see **enhanced** (p. 163)), except for overprint. Font support is limited to the fonts available on the system.

47.6 Atari ST (via AES)

The atari terminal has options to set the character size and the screen colors.

Syntax:

```
set terminal atari {<fontsize>} {<col0> <col1> ... <col15>}
```

The character size must appear if any colors are to be specified. Each of the (up to 16) colors is given as a three-digit hex number, where the digits represent RED, GREEN and BLUE (in that order). The range of 0–15 is scaled to whatever color range the screen actually has. On a normal ST screen, odd and even intensities are the same.

Examples:

Additionally, if an environment variable GNUCOLORS exists, its contents are interpreted as an options string, but an explicit terminal option takes precedence.

47.7 Be

gnuplot provides the **be** terminal type for use with X servers. This terminal type is set automatically at startup if the **DISPLAY** environment variable is set, if the **TERM** environment variable is set to **xterm**, or if the **-display** command line option is used.

Syntax:

```
set terminal be {reset} {<n>}
```

Multiple plot windows are supported: **set terminal be** <**n**> directs the output to plot window number n. If n>0, the terminal number will be appended to the window title and the icon will be labeled **gplt** <**n**>. The active window may distinguished by a change in cursor (from default to crosshair.)

Plot windows remain open even when the **gnuplot** driver is changed to a different device. A plot window can be closed by pressing the letter q while that window has input focus, or by choosing **close** from a window manager menu. All plot windows can be closed by specifying **reset**, which actually terminates the subprocess which maintains the windows (unless **-persist** was specified).

Plot windows will automatically be closed at the end of the session unless the **-persist** option was given.

The size or aspect ratio of a plot may be changed by resizing the **gnuplot** window.

Linewidths and pointsizes may be changed from within **gnuplot** with **set linestyle**.

For terminal type **be**, **gnuplot** accepts (when initialized) the standard X Toolkit options and resources such as geometry, font, and name from the command line arguments or a configuration file. See the X(1) man page (or its equivalent) for a description of such options.

A number of other **gnuplot** options are available for the **be** terminal. These may be specified either as command-line options when **gnuplot** is invoked or as resources in the configuration file ".Xdefaults". They are set upon initialization and cannot be altered during a **gnuplot** session.

47.7.1 Command-line_options

In addition to the X Toolkit options, the following options may be specified on the command line when starting **gnuplot** or as resources in your ".Xdefaults" file:

'-mono'	forces monochrome rendering on color displays.
'-gray'	requests grayscale rendering on grayscale or color displays.
	(Grayscale displays receive monochrome rendering by default.)
'-clear'	requests that the window be cleared momentarily before a
	new plot is displayed.
'-raise'	raises plot window after each plot.
'-noraise'	does not raise plot window after each plot.
'-persist'	plots windows survive after main gnuplot program exits.

The options are shown above in their command-line syntax. When entered as resources in ".Xdefaults", they require a different syntax.

Example:

```
gnuplot*gray: on
```

gnuplot also provides a command line option (**-pointsize** $\langle \mathbf{v} \rangle$) and a resource, **gnuplot*pointsize**: $\langle \mathbf{v} \rangle$, to control the size of points plotted with the **points** plotting style. The value \mathbf{v} is a real number (greater than 0 and less than or equal to ten) used as a scaling factor for point sizes. For example, **-pointsize 2** uses points twice the default size, and **-pointsize 0.5** uses points half the normal size.

47.7.2 Monochrome_options

For monochrome displays, **gnuplot** does not honor foreground or background colors. The default is black-on-white. **-rv** or **gnuplot*reverseVideo:** on requests white-on-black.

47.7.3 Color_resources

For color displays, **gnuplot** honors the following resources (shown here with their default values) or the greyscale resources. The values may be color names as listed in the BE rgb.txt file on your system, hexadecimal RGB color specifications (see BE documentation), or a color name followed by a comma and an **intensity** value from 0 to 1. For example, **blue**, **0.5** means a half intensity blue.

gnuplot*background: white gnuplot*textColor: black gnuplot*borderColor: black gnuplot*axisColor: black gnuplot*line1Color: red gnuplot*line2Color: green gnuplot*line4Color: blue gnuplot*line5Color: cyan gnuplot*line6Color: sienna gnuplot*line7Color: orange gnuplot*line8Color: coral

The command-line syntax for these is, for example, Example:

gnuplot -background coral

47.7.4 Grayscale_resources

When **-gray** is selected, **gnuplot** honors the following resources for grayscale or color displays (shown here with their default values). Note that the default background is black.

gnuplot*background: black gnuplot*textGray: white gnuplot*borderGray: gray50 gnuplot*axisGray: gray50 gnuplot*line1Gray: gray100 gnuplot*line2Gray: gray60 gnuplot*line3Gray: gray80 gnuplot*line4Gray: gray40 gnuplot*line5Gray: gray90 gnuplot*line6Gray: gray50 gnuplot*line7Gray: gray70 gnuplot*line8Gray: gray30

47.7.5 Line_resources

gnuplot honors the following resources for setting the width (in pixels) of plot lines (shown here with their default values.) 0 or 1 means a minimal width line of 1 pixel width. A value of 2 or 3 may improve the appearance of some plots.

```
gnuplot*borderWidth: 2
gnuplot*axisWidth: 0
gnuplot*line1Width: 0
gnuplot*line2Width: 0
gnuplot*line3Width: 0
gnuplot*line4Width: 0
gnuplot*line6Width: 0
gnuplot*line6Width: 0
gnuplot*line7Width: 0
gnuplot*line7Width: 0
gnuplot*line8Width: 0
```

gnuplot honors the following resources for setting the dash style used for plotting lines. 0 means a solid line. A two-digit number jk (j and k are >= 1 and <= 9) means a dashed line with a repeated pattern of j pixels on followed by k pixels off. For example, '16' is a "dotted" line with one pixel on followed by six pixels off. More elaborate on/off patterns can be specified with a four-digit value. For example, '4441' is four on, four off, four on, one off. The default values shown below are for monochrome displays or monochrome rendering on color or grayscale displays. For color displays, the default for each is 0 (solid line) except for **axisDashes** which defaults to a '16' dotted line.

```
gnuplot*borderDashes: 0
gnuplot*axisDashes: 16
gnuplot*line1Dashes: 0
gnuplot*line2Dashes: 42
gnuplot*line3Dashes: 13
gnuplot*line4Dashes: 44
gnuplot*line5Dashes: 15
gnuplot*line6Dashes: 4441
gnuplot*line7Dashes: 42
gnuplot*line8Dashes: 13
```

47.8 Cgi

The **cgi** and **hcgi** terminal drivers support SCO CGI drivers. **hcgi** is for printers; the environment variable CGIPRNT must be set. **cgi** may be used for either a display or hardcopy; if the environment variable CGIDISP is set, then that display is used. Otherwise CGIPRNT is used.

These terminals have no options.

47.9 Cgm

The **cgm** terminal generates a Computer Graphics Metafile, Version 1. This file format is a subset of the ANSI X3.122-1986 standard entitled "Computer Graphics - Metafile for the Storage and Transfer of Picture Description Information". Several options may be set in **cgm**.

Syntax:

where <mode> is landscape, portrait, or default; <color> is either color or monochrome; <rotation> is either rotate or norotate; solid draws all curves with solid lines, overriding any dashed patterns; <plot_width> is the assumed width of the plot in points; _width> is the line width in points (default 1); is the name of a font; and <fontsize> is the size of the font in points (default 12).

By default, **cgm** uses rotated text for the Y axis label.

The first six options can be in any order. Selecting default sets all options to their default values.

Each color must be of the form 'xrrggbb', where x is the literal character 'x' and 'rrggbb' are the red, green and blue components in hex. For example, 'x00ff00' is green. The background color is set first, then the plotting colors.

Examples:

```
set terminal cgm landscape color rotate dashed width 432 \
linewidth 1 'Helvetica Bold' 12  # defaults
set terminal cgm linewidth 2 14  # wider lines & larger font
set terminal cgm portrait "Times Italic" 12
set terminal cgm color solid  # no pesky dashes!
```

47.9.1 Font

The first part of a Computer Graphics Metafile, the metafile description, includes a font table. In the picture body, a font is designated by an index into this table. By default, this terminal generates a table with the following 35 fonts, plus six more with **italic** replaced by **oblique**, or vice-versa (since at least the Microsoft Office and Corel Draw CGM import filters treat **italic** and **oblique** as equivalent):

CGM fonts Helvetica Helvetica Bold Helvetica Oblique Helvetica Bold Oblique Times Roman Times Bold Times Italic Times Bold Italic Courier Courier Bold Courier Oblique Courier Bold Oblique Symbol Hershey/Cartographic_Roman Hershey/Cartographic_Greek Hershey/Simplex_Roman Hershey/Simplex_Greek Hershey/Simplex_Script Hershey/Complex_Roman Hershey/Complex_Greek Hershey/Complex_Script Hershey/Complex_Italic Hershey/Complex_Cyrillic Hershey/Duplex_Roman Hershey/Triplex_Roman Hershey/Triplex_Italic Hershey/Gothic_German Hershey/Gothic_English Hershey/Gothic_Italian Hershey/Symbol_Set_1 Hershey/Symbol_Set_2 Hershey/Symbol_Math ZapfDingbats Script 15

The first thirteen of these fonts are required for WebCGM. The Microsoft Office CGM import filter implements the 13 standard fonts listed above, and also 'ZapfDingbats' and 'Script'. However, the script

font may only be accessed under the name '15'. For more on Microsoft import filter font substitutions, check its help file which you may find here:

```
C:\Program Files\Microsoft Office\Cgmimp32.hlp
```

and/or its configuration file, which you may find here:

```
C:\Program Files\Common Files\Microsoft Shared\Grphflt\Cgmimp32.cfg
```

In the **set term** command, you may specify a font name which does not appear in the default font table. In that case, a new font table is constructed with the specified font as its first entry. You must ensure that the spelling, capitalization, and spacing of the name are appropriate for the application that will read the CGM file. (Gnuplot and any MIL-D-28003A compliant application ignore case in font names.) If you need to add several new fonts, use several **set term** commands.

Example:

```
set terminal cgm 'Old English'
set terminal cgm 'Tengwar'
set terminal cgm 'Arabic'
set output 'myfile.cgm'
plot ...
set output
```

You cannot introduce a new font in a **set label** command.

47.9.2 Fontsize

Fonts are scaled assuming the page is 6 inches wide. If the **size** command is used to change the aspect ratio of the page or the CGM file is converted to a different width, the resulting font sizes will be scaled up or down accordingly. To change the assumed width, use the **width** option.

47.9.3 Linewidth

The **linewidth** option sets the width of lines in pt. The default width is 1 pt. Scaling is affected by the actual width of the page, as discussed under the **fontsize** and **width** options.

47.9.4 Rotate

The **norotate** option may be used to disable text rotation. For example, the CGM input filter for Word for Windows 6.0c can accept rotated text, but the DRAW editor within Word cannot. If you edit a graph (for example, to label a curve), all rotated text is restored to horizontal. The Y axis label will then extend beyond the clip boundary. With **norotate**, the Y axis label starts in a less attractive location, but the page can be edited without damage. The **rotate** option confirms the default behavior.

47.9.5 Solid

The **solid** option may be used to disable dashed line styles in the plots. This is useful when color is enabled and the dashing of the lines detracts from the appearance of the plot. The **dashed** option confirms the default behavior, which gives a different dash pattern to each curve.

47.9.6 Size

Default size of a CGM plot is 32599 units wide and 23457 units high for landscape, or 23457 units wide by 32599 units high for portrait.

47.9.7 Width

All distances in the CGM file are in abstract units. The application that reads the file determines the size of the final plot. By default, the width of the final plot is assumed to be 6 inches (15.24 cm). This distance is used to calculate the correct font size, and may be changed with the **width** option. The keyword should be followed by the width in points. (Here, a point is 1/72 inch, as in PostScript. This unit is known as a "big point" in TeX.) Gnuplot **expressions** can be used to convert from other units.

Example:

```
set terminal cgm width 432 # default
set terminal cgm width 6*72 # same as above
set terminal cgm width 10/2.54*72 # 10 cm wide
```

47.9.8 Nofontlist

The default font table includes the fonts recommended for WebCGM, which are compatible with the Computer Graphics Metafile input filter for Microsoft Office and Corel Draw. Another application might use different fonts and/or different font names, which may not be documented. As a workaround, the **nofontlist** option deletes the font table from the CGM file. In this case, the reading application should use a default table. Gnuplot will still use its own default font table to select font indices. Thus, 'Helvetica' will give you an index of 1, which should get you the first entry in your application's default font table. 'Helvetica Bold' will give you its second entry, etc.

The former **winword6** option is now a deprecated synonym for **nofontlist**. The problems involving the color and font tables that the **winword6** option was intended to work around turned out to be gnuplot bugs which have now been fixed.

47.10 Corel

The **corel** terminal driver supports CorelDraw.

Syntax:

where the fontsize and linewidth are specified in points and the sizes in inches. The defaults are monochrome, "SwitzerlandLight", 22, 8.2, 10 and 1.2.

47.11 Debug

This terminal is provided to allow for the debugging of **gnuplot**. It is likely to be of use only for users who are modifying the source code.

47.12 Dospc

The **dospc** terminal driver supports PCs with arbitrary graphics boards, which will be automatically detected. It should be used only if you are not using the gcc or Zortec C/C++ compilers.

47.13 Dumb

The **dumb** terminal driver has an optional size specification and trailing linefeed control.

Syntax:

where <xsize> and <ysize> set the size of the dumb terminals. Default is 79 by 24. The last newline is printed only if **feed** is enabled.

Examples:

```
set term dumb nofeed set term dumb 79 49 # VGA screen---why would anyone do that?
```

47.14 Dxf

The **dxf** terminal driver creates pictures that can be imported into AutoCad (Release 10.x). It has no options of its own, but some features of its plots may be modified by other means. The default size is 120x80 AutoCad units, which can be changed by **set size**. **dxf** uses seven colors (white, red, yellow, green, cyan, blue and magenta), which can be changed only by modifying the source file. If a black-and-white plotting device is used, the colors are mapped to differing line thicknesses. See the description of the AutoCad print/plot command.

47.15 Dxy800a

This terminal driver supports the Roland DXY800A plotter. It has no options.

47.16 Eepic

The **eepic** terminal driver supports the extended LaTeX picture environment. It is an alternative to the **latex** driver.

The output of this terminal is intended for use with the "eepic.sty" macro package for LaTeX. To use it, you need "eepic.sty", "epic.sty" and a printer driver that supports the "tpic" \specials. If your printer driver doesn't support those \specials, "eepicemu.sty" will enable you to use some of them. dvips and dvipdfm do support the "tpic" \specials.

Syntax:

```
set terminal eepic {color, dashed, rotate, small, tiny, default, <fontsize>}
```

Options: You can give options in any order you wish. 'color' causes gnuplot to produce \color{...} commands so that the graphs are colored. Using this option, you must include \usepackage{color} in the preambel of your latex document. 'dashed' will allow dashed line types; without this option, only solid lines with varying thickness will be used. 'dashed' and 'color' are mutually exclusive; if 'color' is specified, then 'dashed' will be ignored. 'rotate' will enable true rotated text (by 90 degrees). Otherwise, rotated text will be typeset with letters stacked above each other. If you use this option you must include \usepackage{graphicx} in the preamble. 'small' will use \scriptsize symbols as point markers (Probably does not work with TeX, only LaTeX2e). Default is to use the default math size. 'tiny' uses \scriptscriptstyle symbols. 'default' resets all options to their defaults = no color, no dashed lines, pseudo-rotated (stacked) text, large point symbols. <fontsize> is a number which specifies the font size inside the picture environment; the unit is pt (points), i.e., 10 pt equals approx. 3.5 mm. If fontsize is not specified, then all text inside the picture will be set in \footnotesize.

Notes: Remember to escape the # character (or other chars meaningful to (La-)TeX) by \\ (2 back-slashes). It seems that dashed lines become solid lines when the vertices of a plot are too close. (I do not know if that is a general problem with the tpic specials, or if it is caused by a bug in eepic.sty or dvips/dvipdfm.) The default size of an eepic plot is 5x3 inches, which can be scaled by 'set size a,b'. Points, among other things, are drawn using the LaTeX commands "\Diamond", "\Box", etc. These commands no longer belong to the LaTeX2e core; they are included in the latexsym package, which is part of the base distribution and thus part of any LaTeX implementation. Please do not forget to use this package. Instead of latexsym, you can also include the amssymb package. All drivers for LaTeX offer a special way of controlling text positioning: If any text string begins with '{', you also need to include a '}' at the end of the text, and the whole text will be centered both horizontally and vertically. If the text string begins with '[', you need to follow this with a position specification (up to two out of

t,b,l,r), ']{', the text itself, and finally '}'. The text itself may be anything LaTeX can typeset as an LR-box. '\rule{}{}'s may help for best positioning.

Examples: set term eepic

```
output graphs as eepic macros inside a picture environment; \input the resulting file in your LaTeX document.
```

set term eepic color tiny rotate 8

```
eepic macros with \color macros, \scripscriptsize point markers, true rotated text, and all text set with 8pt.
```

About label positioning: Use gruplot defaults (mostly sensible, but sometimes not really best):

```
set title '\LaTeX\ -- $ \gamma $'
```

Force centering both horizontally and vertically:

```
set label '{\LaTeX\ -- $ \gamma $}' at 0,0
```

Specify own positioning (top here):

```
set xlabel '[t]{\LaTeX\ -- $ \gamma $}'
```

The other label – account for long ticlabels:

```
set ylabel '[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{0pt}}'
```

47.17 Emf

The **emf** terminal generates an Enhanced Metafile Format file. This file format is the metafile standard on MS Win32 Systems.

Syntax:

<color> is either color or monochrome; solid draws all curves with solid lines, overriding any dashed patterns; is the name of a font; and <fontsize> is the size of the font in points.

The first two options can be in any order. Selecting **default** sets all options to their default values.

Examples:

```
set terminal emf 'Times Roman Italic' 12
set terminal emf color solid  # no pesky dashes!
```

47.18 Emxvga

The emxvga, emxvesa and vgal terminal drivers support PCs with SVGA, vesa SVGA and VGA graphics boards, respectively. They are intended to be compiled with "emx-gcc" under either DOS or OS/2. They also need VESA and SVGAKIT maintained by Johannes Martin (JMARTIN@GOOFY.ZDV.UNI-MAINZ.DE) with additions by David J. Liu (liu@phri.nyu.edu).

Syntax:

```
set terminal emxvga
set terminal emxvesa {vesa-mode}
set terminal vgal
```

The only option is the vesa mode for **emxvesa**, which defaults to G640x480x256.

47.19 Epslatex

The **epslatex** driver generates output for further processing by LaTeX.

Syntax:

The epslatex terminal prints a plot as **terminal postscript eps** but transfers the texts to LaTeX instead of including in the PostScript code. Thus, many options are the same as in the **postscript terminal**.

From version 4.0 to 4.1, some changes have been invoked into the default appearance of the epslatex terminal to reach better consistency with the postscript terminal: The plot size has been changed from 5 x 3 inches to 5 x 3.5 inches; the character width is now estimated to be 60% of the font size while the old epslatex terminal used 50%; now, the larger number of postscript linetypes and symbols are used. To reach an appearance that is nearly identical to the old one specify the option **oldstyle**. (In fact some small differences remain: the symbol sizes are slightly different, the tics are half as large as in the old terminal which can be changed using **set ticscale**, and the arrows have all features as in the postscript terminal.)

The option **color** enables color; **solid** draws all plots with solid lines, overriding any dashed patterns; **dashlength** or **dl** scales the length of the dashed-line segments by <DL> (which is a floating-point number greater than zero); **linewidth** or **lw** scales all linewidths by <LW>;

By default the generated PostScript code uses language features that were introduced in PostScript Level 2, notably pattern-fill of irregular objects such as filledcurves. The **level1** option substitutes PostScript Level 1 approximations of these features. This may be required by some old printers and by some old versions of Adobe Illustrator. This flag can be toggled later by editing a single line in the PostScript output file.

rounded sets line caps and line joins to be rounded; butt is the default, butt caps and mitered joins;

palfuncparam is only available if compiled with pm3d support. It controls how set palette functions are encoded as gradients in the output. Analytic color component functions (set via set palette functions) are encoded as linear interpolated gradients in the postscript output: The color component functions are sampled at <samples> points and all points are removed from this gradient which can be removed without changing the resulting colors by more than <maxdeviation>. For almost every useful palette you may savely leave the defaults of <samples>=2000 and <maxdeviation>=0.003 untouched.

blacktext forces all text to be written in black even in color mode;

The epslatex driver offers a special way of controlling text positioning: (a) If any text string begins with '{', you also need to include a '}' at the end of the text, and the whole text will be centered both horizontally and vertically by LaTeX. (b) If the text string begins with '[', you need to continue it with: a position specification (up to two out of t,b,l,r,c), ']{', the text itself, and finally, '}'. The text itself may be anything LaTeX can typeset as an LR-box. \rule{}{}'s may help for best positioning. See also the documentation for the **pslatex (p. 165)** terminal driver. To create multiline labels, use \shortstack, for example

```
set ylabel '[r]{\shortstack{first line \\ second line}}'
```

The **back** option of **set label** commands is handled slightly different than in other terminals. Labels using 'back' are printed behind all other elements of the plot while labels using 'front' are printed above

gnuplot 4.1 47 TERMINAL

everything else.

The driver produces two different files, one for the eps part of the figure and one for the LaTeX part. The name of the LaTeX file is taken from the **set output** command. The name of the eps file is derived by replacing the file extension (normally .tex) with .eps instead. There is no LaTeX output if no output file is given! Remember to close the **output file** before next plot unless in **multiplot** mode.

In your LaTeX documents use '\input{filename}' to include the figure. The .eps file is included by the command \includegraphics{...}, so you must also include \usepackage{graphicx} in the LaTeX preamble. If you want to use coloured text (option textcolour) you also have to include \usepackage{color} in the LaTeX preamble.

Pdf files can be made from the eps file using 'epstopdf'. If the graphics package is properly configured, the LaTeX files can also be processed by pdflatex without changes, using the pdf files instead of the eps files. The behaviour concerning font selection depends on the header mode. In all cases, the given font size is used for the calculation of proper spacing. When not using the **standalone** mode the actual LaTeX font and font size at the point of inclusion is taken, so use LaTeX commands for changing fonts. If you use e.g. 12pt as font size for your LaTeX document, use '"" 12' as options. The font name is ignored. If using **standalone** the given font and font size are used, see below for a detailed description.

If text is printed coloured is controlled by the TeX booleans \ifGPcolor and \ifGPblacktext. Only if \ifGPcolor is true and \ifGPblacktext is false, text is printed coloured. You may either change them in the generated TeX file or provide them globally in your TeX file, for example by using

\newif\ifGPblacktext
\GPblacktexttrue

in the preamble of your document. The local assignment is only done if no global value is given.

When using the epslatex terminal give the name of the TeX file in the **set output** command including the file extension (normally ".tex"). The eps filename is generated by replacing the extension by ".eps".

If using the **standalone** mode a complete LaTeX header is added to the LaTeX file; and "-inc" is added to the filename of the eps file. The **standalone** mode generates a TeX file that produces output with the correct size when using dvips, pdfTeX, or VTeX. The default, **input**, generates a file that has to be included into a LaTeX document using the \input command.

If a font other than "" or "default" is given it is interpreted as LaTeX font name. It contains up to three parts, separated by a comma: 'fontname,fontseries,fontshape'. If the default fontshape or fontseries are requested, they can be omitted. Thus, the real syntax for the fontname is '[fontname][,fontseries][,fontshape]'. The naming convention for all parts is given by the LaTeX font scheme. The fontname is 3 to 4 characters long and is built as follows: One character for the font vendor, two characters for the name of the font, and optionally one additional character for special fonts, e.g., 'j' for fonts with old-style numerals or 'x' for expert fonts. The names of many fonts is described in

```
http://www.tug.org/fontname/fontname.pdf
```

For example, 'cmr' stands for Computer Modern Roman, 'ptm' for Times-Roman, and 'phv' for Helvetica. The font series denotes the thickness of the glyphs, in most cases 'm' for normal ("medium") and 'bx' or 'b' for bold fonts. The font shape is 'n' for upright, 'it' for italics, 'sl' for slanted, or 'sc' for small caps, in general. Some fonts may provide different font series or shapes.

Examples:

Use Times-Roman boldface (with the same shape as in the surrounding text):

```
set terminal epslatex 'ptm,bx'
```

Use Helvetica, boldface, italics:

```
set terminal epslatex 'phv,bx,it'
```

Continue to use the surrounding font in slanted shape:

```
set terminal epslatex ',,sl'
```

Use small capitals:

```
set terminal epslatex ',,sc'
```

By this method, only text fonts are changed. If you also want to change the math fonts you have to use the "gnuplot.cfg" file or the **header** option, described below.

In standalone mode, the font size is taken from the given font size in the **set terminal** command. To be able to use a specified font size, a file "size<size>.clo" has to reside in the LaTeX search path. By default, 10pt, 11pt, and 12pt are supported. If the package "extsizes" is installed, 8pt, 9pt, 14pt, 17pt, and 20pt are added.

The **header** option takes a string as argument. This string is written into the generated LaTeX file. If using the **standalone** mode, it is written into the preamble, directly before the \begin{document} command. In the **input** mode, it is placed directly after the \begingroup command to ensure that all settings are local to the plot.

Examples:

Use T1 fontencoding, change the text and math font to Times-Roman as well as the sans-serif font to Helvetica:

```
set terminal epslatex standalone header \
"\usepackage[T1]{fontenc}\n\usepackage{mathptmx}\n\usepackage{helvet}"
```

Use a boldface font in the plot, not influencing the text outside the plot:

```
set terminal epslatex input header "\\bfseries"
```

If the file "gnuplot.cfg" is found by LaTeX it is input in the preamble the LaTeX document, when using **standalone** mode. It can be used for further settings, e.g., changing the document font to Times-Roman, Helvetica, and Courier, including math fonts (handled by "mathptmx.sty"):

```
\usepackage{mathptmx}
\usepackage[scaled=0.92]{helvet}
\usepackage{courier} The file "gnuplot.cfg" is loaded before the header information given
```

by the **header** command. Thus, you can use **header** to overwrite some of settings performed using "gnuplot.cfg"

47.20 Epson-180dpi

This driver supports a family of Epson printers and derivatives.

epson-180dpi and **epson-60dpi** are drivers for Epson LQ-style 24-pin printers with resolutions of 180 and 60 dots per inch, respectively.

epson-lx800 is a generic 9-pin driver appropriate for printers like the Epson LX-800, the Star NL-10 and NX-1000, the PROPRINTER, and so forth.

nec-cp6 is generic 24-pin driver that can be used for printers like the NEC CP6 and the Epson LQ-800.

The **okidata** driver supports the 9-pin OKIDATA 320/321 Standard printers.

The **starc** driver is for the Star Color Printer.

The tandy-60dpi driver is for the Tandy DMP-130 series of 9-pin, 60-dpi printers.

Only **nec-cp6** has any options.

Syntax:

```
set terminal nec-cp6 {monochrome | colour | draft}
```

which defaults to monochrome.

With each of these drivers, a binary copy is required on a PC to print. Do not use **print** — use instead **copy file /b lpt1:**.

47.21 Excl

The **excl** terminal driver supports Talaris printers such as the EXCL Laser printer and the 1590. It has no options.

47.22 Fig

The **fig** terminal device generates output in the Fig graphics language.

Syntax:

monochrome and color determine whether the picture is black-and-white or color. small and big produce a 5x3 or 8x5 inch graph in the default landscape mode and 3x5 or 5x8 inches in portrait mode. size sets (overrides) the size of the drawing area to <xsize>*<ysize> in units of inches or centimeters depending on the inches or metric setting in effect. The latter settings is also used as default units for editing with "xfig".

pointsmax <max_points> sets the maximum number of points per polyline.

solid inhibits automatic usage of dashed lines when solid linestyles are used up, which otherwise occurs.

fontsize sets the size of the text font to <fsize> points. **textnormal** resets the text flags and selects postscript fonts, **textspecial** sets the text flags for LaTeX specials, **texthidden** sets the hidden flag and **textrigid** the rigid flag.

depth sets the default depth layer for all lines and text. The default depth is 10 to leave room for adding material with "xfig" on top of the plot.

version sets the format version of the generated fig output. Currently only versions 3.1 and 3.2 are supported.

thickness sets the default line thickness, which is 1 if not specified. Overriding the thickness can be achieved by adding a multiple of 100 to the **linetype** value for a **plot** command. In a similar way the **depth** of plot elements (with respect to the default depth) can be controlled by adding a multiple of 1000 to inetype>. The depth is then <layer> + <linetype>/1000 and the thickness is (<linetype>/1000)/100 or, if that is zero, the default line thickness. **linewidth** is a synonym for **thickness**.

Additional point-plot symbols are also available with the **fig** driver. The symbols can be used through **pointtype** values % 100 above 50, with different fill intensities controlled by <pointtype> % 5 and outlines in black (for <pointtype> % 10 < 5) or in the current color. Available symbols are

```
50 - 59: circles
60 - 69: squares
70 - 79: diamonds
80 - 89: upwards triangles
90 - 99: downwards triangles
```

The size of these symbols is linked to the font size. The depth of symbols is by default one less than the depth for lines to achieve nice error bars. If <pointtype> is above 1000, the depth is <layer> + <pointtype>/1000-1. If <pointtype>%1000 is above 100, the fill color is (<pointtype>%1000)/100-1.

Available fill colors are (from 1 to 9): black, blue, green, cyan, red, magenta, yellow, white and dark blue (in monochrome mode: black for 1 to 6 and white for 7 to 9).

See plot with (p. 59) for details of epinetype> and <pointtype>.

The **big** option is a substitute for the **bfig** terminal in earlier versions, which is no longer supported.

Examples:

```
set terminal fig monochrome small pointsmax 1000 # defaults
```

```
plot 'file.dat' with points linetype 102 pointtype 759
```

would produce circles with a blue outline of width 1 and yellow fill color.

```
plot 'file.dat' using 1:2:3 with err linetype 1 pointtype 554
```

would produce errorbars with black lines and circles filled red. These circles are one layer above the lines (at depth 9 by default).

To plot the error bars on top of the circles use

```
plot 'file.dat' using 1:2:3 with err linetype 1 pointtype 2554
```

47.23 Ggi

The **ggi** driver can run on different targets as X or sygalib.

Syntax:

```
set terminal ggi [acceleration <integer>] [[mode] {mode}]
```

In X the window cannot be resized using window manager handles, but the mode can be given with the mode option, e.g.:

- V1024x768
- V800x600
- V640x480
- V320x200

Please refer to the ggi documentation for other modes. The 'mode' keyword is optional. It is recommended to select the target by environment variables as explained in the libggi manual page. To get DGA on X, you should for example

```
bash> export GGI_DISPLAY=DGA
csh> setenv GGI_DISPLAY DGA
```

'acceleration' is only used for targets which report relative pointer motion events (e.g. DGA) and is a strictly positive integer multiplication factor for the relative distances. The default for acceleration is 7.

Examples:

```
set term ggi acc 10
set term ggi acc 1 mode V1024x768
set term ggi V1024x768
```

47.24 Gif

Syntax:

GIF images are created using libgd, with optional support for TrueType fonts via libfreetype.

Five basic fonts are supported directly by the gd library. These are **tiny** (5x8 pixels), **small** (6x12 pixels), **medium**, (7x13 Bold), **large** (8x16) or **giant** (9x15 pixels). These fonts cannot be scaled or rotated (pure horizontal or vertical text only).

transparent instructs the driver to generate transparent GIFs. The first color will be the transparent one. Default is **notransparent**.

enhanced enables the enhanced text processing features, (subscripts, superscripts and mixed fonts). See **enhanced** (**p. 163**) for more information. The full enhanced mode syntax is supported by the PNG/GIF driver itself, but some of these features are dependent on which version of the underlying libgd library is present, and which fonts are available.

If your local gd library was built with support for TrueType and Adobe Type 1 fonts, they may be selected using the 'font <face> {<pointsize>}' option. <face> is either the full pathname to the font file, or a font face name that is assumed to be the first part of a filename in one of the directories listed in the GDFONTPATH environmental variable. That is, 'set term gif font "Face" will look for a font file named either <somedirectory>/Face.ttf or <somedirectory>/Face.pfa. Both TrueType and Adobe Type 1 fonts are fully scalable and may be rotated through any angle. If no font is specified, gnuplot checks the environmental variable GNUPLOT_DEFAULT_GDFONT to see if there is a preferred default font.

The size $\langle x,y \rangle$ is given in pixels — it defaults to 640x480. The number of pixels can be also modified by scaling with the **set size** command. **crop** trims blank space from the edges of the completed plot, resulting in a smaller final image size. Default is **nocrop**.

Each color must be of the form 'xrrggbb', where x is the literal character 'x' and 'rrggbb' are the red, green and blue components in hex. For example, 'x00ff00' is green. The background color is set first, then the border colors, then the X & Y axis colors, then the plotting colors. The maximum number of colors that can be set is 256.

Examples:

which uses white for the non-transparent background, black for borders, gray for the axes, and red, orange, medium aquamarine, thistle 3, light blue, blue, plum and dark violet for eight plotting colors.

```
set terminal gif font 'arial' 14 size 800,600
```

which searches for a TrueType font with face name 'arial' in the directory specified by the environment variable GDFONTPATH and 14pt font size.

47.25 Gnugraph(GNU plotutils)

The gnugraph driver produces device-independent output in the GNU plot graphics language. The default size of the PostScript results generated by "plot2ps" is 5×3 inches; this can be increased up to about 8.25×8.25 by set size.

Syntax:

which defaults to 10-point "Courier".

For **type**, the following options are accepted: **X**, **pnm**, **gif**, **ai**, **ps**, **cgm**, **fig**, **pcl5**, **hpgl**, **tek**, and **meta** (default). The **size** option (default is a4) is passed straight through to plotutils, it's the user's responsibility to provide correct values. Details can be found in the plotutils documentation.

Examples:

```
set terminal gnugraph type hpgl size "a4" set terminal gnugraph size "a4,xoffset=-5mm,yoffset=2.0cm" type pnm
```

There is a non-GNU version of the **gnugraph** driver which cannot be compiled unless this version is left out.

47.26 Gpic

The **gpic** terminal driver generates GPIC graphs in the Free Software Foundations's "groff" package. The default size is 5×3 inches. The only option is the origin, which defaults to (0,0).

Syntax:

```
set terminal gpic {<x> <y>}
```

where \mathbf{x} and \mathbf{y} are in inches.

A simple graph can be formatted using

```
groff -p -mpic -Tps file.pic > file.ps.
```

The output from pic can be pipe-lined into eqn, so it is possible to put complex functions in a graph with the **set label** and **set** $\{x/y\}$ **label** commands. For instance,

```
set ylab '@space 0 int from 0 to x alpha ( t ) roman d t@'
```

will label the y axis with a nice integral if formatted with the command:

Figures made this way can be scaled to fit into a document. The pic language is easy to understand, so the graphs can be edited by hand if need be. All co-ordinates in the pic-file produced by **gnuplot** are given as x+gnuplotx and y+gnuploty. By default x and y are given the value 0. If this line is removed with an editor in a number of files, one can put several graphs in one figure like this (default size is 5.0x3.0 inches):

```
.PS 8.0

x=0;y=3

copy "figa.pic"

x=5;y=3

copy "figb.pic"

x=0;y=0

copy "figc.pic"

x=5;y=0

copy "figd.pic"

.PE
```

This will produce an 8-inch-wide figure with four graphs in two rows on top of each other.

One can also achieve the same thing by the command

```
set terminal gpic x y
for example, using
.PS 6.0
copy "trig.pic"
.PE
```

47.27 Gpr

The **gpr** terminal driver supports the Apollo Graphics Primitive Resource for a fixed-size window. It has no options.

If a variable window size is desired, use the **apollo** terminal instead.

47.28 Grass

The **grass** terminal driver gives **gnuplot** capabilities to users of the GRASS geographic information system. Contact grassp-list@moon.cecer.army.mil for more information. Pages are written to the current frame of the GRASS Graphics Window. There are no options.

47.29 Hercules

These drivers supports PC monitors with autodetected graphics boards. They can be used only when compiled with Zortech C/C++. None have options.

47.30 Hp2623a

The hp2623a terminal driver supports the Hewlett Packard HP2623A. It has no options.

47.31 Hp2648

The hp2648 terminal driver supports the Hewlett Packard HP2647 and HP2648. It has no options.

47.32 Hp500c

The **hp500c** terminal driver supports the Hewlett Packard HP DeskJet 500c. It has options for resolution and compression.

Syntax:

```
set terminal hp500c {<res>} {<comp>}
```

where **res** can be 75, 100, 150 or 300 dots per inch and **comp** can be "rle", or "tiff". Any other inputs are replaced by the defaults, which are 75 dpi and no compression. Rasterization at the higher resolutions may require a large amount of memory.

47.33 Hpgl

The **hpgl** driver produces HPGL output for devices like the HP7475A plotter. There are two options which can be set: the number of pens and **eject**, which tells the plotter to eject a page when done. The default is to use 6 pens and not to eject the page when done.

The international character sets ISO-8859-1 and CP850 are recognized via **set encoding iso_8859_1** or **set encoding cp850** (see **set encoding (p. 77)** for details).

Syntax:

Syntax:

```
set terminal hpgl {<number_of_pens>} {eject}
```

The selection

```
set terminal hpgl 8 eject
```

is equivalent to the previous hp7550 terminal, and the selection

```
set terminal hpgl 4
```

is equivalent to the previous hp7580b terminal.

The **pcl5** driver supports plotters such as the Hewlett-Packard Designjet 750C, the Hewlett-Packard Laserjet III, and the Hewlett-Packard Laserjet IV. It actually uses HPGL-2, but there is a name conflict among the terminal devices. It has several options which must be specified in the order indicated below:

```
set terminal pcl5 {mode <mode>} {<plotsize>}
    {{color {<number_of_pens>}} | monochrome} {solid | dashed}
    {font <font>} {size <fontsize>} {pspoints | nopspoints}
```

<mode> is landscape or portrait. <plotsize> is the physical plotting size of the plot, which is one of the following: letter for standard (8 1/2" X 11") displays, legal for (8 1/2" X 14") displays, noextended for (36" X 48") displays (a letter size ratio) or, extended for (36" X 55") displays (almost

a legal size ratio). **color** is for multi-pen (i.e. color) plots, and <number_of_pens> is the number of pens (i.e. colors) used in color plots. **monochrome** is for one (e.g. black) pen plots. **solid** draws all lines as solid lines, or **dashed** will draw lines with different dashed and dotted line patterns. is **stick**, **univers**, **cg_times**, **zapf_dingbats**, **antique_olive**, **arial**, **courier**, **garamond_antigua**, **letter_gothic**, **cg_omega**, **albertus**, **times_new_roman**, **clarendon**, **coronet**, **marigold**, **true-type_symbols**, or **wingdings**. <fontsize> is the font size in points. The point type selection can be the standard default set by specifying **nopspoints**, or the same set of point types found in the postscript terminal by specifying **pspoints**.

Note that built-in support of some of these options is printer device dependent. For instance, all the fonts are supposedly supported by the HP Laserjet IV, but only a few (e.g. univers, stick) may be supported by the HP Laserjet III and the Designjet 750C. Also, color obviously won't work on the the laserjets since they are monochrome devices.

Defaults: landscape, noextended, color (6 pens), solid, univers, 12 point, and nopspoints.

With **pcl5** international characters are handled by the printer; you just put the appropriate 8-bit character codes into the text strings. You don't need to bother with **set encoding**.

HPGL graphics can be imported by many software packages.

47.34 Hpljii

The **hpljii** terminal driver supports the HP Laserjet Series II printer. The **hpdj** driver supports the HP DeskJet 500 printer. These drivers allow a choice of resolutions.

Syntax:

```
set terminal hpljii | hpdj {<res>}
```

where **res** may be 75, 100, 150 or 300 dots per inch; the default is 75. Rasterization at the higher resolutions may require a large amount of memory.

The **hp500c** terminal is similar to **hpdj**; **hp500c** additionally supports color and compression.

47.35 Hppj

The **hppj** terminal driver supports the HP PaintJet and HP3630 printers. The only option is the choice of font.

Syntax:

```
set terminal hppj {FNT5X9 | FNT9X17 | FNT13X25}
```

with the middle-sized font (FNT9X17) being the default.

47.36 Imagen

The **imagen** terminal driver supports Imagen laser printers. It is capable of placing multiple graphs on a single page.

Syntax:

where **fontsize** defaults to 12 points and the layout defaults to **landscape**. <**horiz**> and <**vert**> are the number of graphs in the horizontal and vertical directions; these default to unity.

Example:

```
set terminal imagen portrait [2,3]
```

puts six graphs on the page in three rows of two in portrait orientation.

47.37 Iris4d

The **iris4d** terminal driver supports Silicon Graphics IRIS 4D computers. Its only option is 8- or 24-bit color depth. The default is 8.

Syntax:

```
set terminal iris4d {8 | 24}
```

The color depth is not really a choice – the value appropriate for the hardware should be selected.

When using 24-bit mode, the colors can be directly specified via the file .gnuplot_iris4d that is searched in the current directory and then in the home directory specified by the HOME environment variable. This file holds RGB values for the background, border, labels and nine plotting colors, in that order. For example, here is a file containing the default colors:

```
85
     85
          85
                  Background
                                (dark gray)
0
     0
          0
                  Boundary
                                (black)
170
     0
          170
                  Labeling
                                (magenta)
85
                  Plot Color 1 (light cyan)
     255
          255
170
     0
          0
                  Plot Color 2 (red)
     170
          0
                  Plot Color 3 (green)
0
     85
                  Plot Color 4 (light magenta)
255
          255
                  Plot Color 5 (yellow)
255
     255
          85
                  Plot Color 6 (light red)
255
     85
          85
85
     255
          85
                  Plot Color 7 (light green)
0
     170
          170
                  Plot Color 8 (cyan)
                  Plot Color 9 (brown)
170
     170
          0
```

This file must have exactly 12 lines of RGB triples. No empty lines are allowed, and anything after the third number on a line is ignored.

47.38 Jpeg

Syntax:

JPEG images are created using libgd, with optional support for TrueType fonts via libfreetype.

The interlace option creates a progressive JPEG image. Default is nointerlace.

Five basic fonts are supported directly by the gd library. These are **tiny** (5x8 pixels), **small** (6x12 pixels), **medium**, (7x13 Bold), **large** (8x16) or **giant** (9x15 pixels). These fonts cannot be scaled or rotated (pure horizontal or vertical text only).

If gnuplot was built with support for TrueType (*.ttf) or Adobe Type 1 (*.pfa) fonts, they may be selected using the 'font <face> {<pointsize>}' option. <face> is either the full pathname to the font file, or a font face name that is assumed to be the first part of a filename in one of the directories listed in the GDFONTPATH environmental variable. That is, 'set term jpeg font "Face" will look for a font file named either <somedirectory>/Face.ttf or <somedirectory>/Face.pfa. Both TrueType and Adobe Type 1 fonts are fully scalable and may be rotated through any angle. If no font is specified, gnuplot checks the environmental variable GNUPLOT_DEFAULT_GDFONT to see if there is a preferred default font.

enhanced enables the enhanced text processing features, (subscripts, superscripts and mixed fonts). See enhanced (p. 163) for more information. The full enhanced mode syntax is supported by the

PNG/JPEG driver itself, but some of these features are dependent on which version of the underlying libgd library is present, and which fonts are available.

The size $\langle x,y \rangle$ is given in pixels — it defaults to 640x480. The number of pixels can be also modified by scaling with the **set size** command. **crop** trims blank space from the edges of the completed plot, resulting in a smaller final image size. Default is **nocrop**.

Each color must be of the form 'xrrggbb', where x is the literal character 'x' and 'rrggbb' are the red, green and blue components in hex. For example, 'x00ff00' is green. The background color is set first, then the border colors, then the X & Y axis colors, then the plotting colors. The maximum number of colors that can be set is 256.

Examples:

```
set terminal jpeg medium size 640,480 \ xffffff x000000 x404040 \ xff0000 xffa500 x66cdaa xcdb5cd \ xadd8e6 x0000ff xdda0dd x9500d3  # defaults
```

which uses white for the non-transparent background, black for borders, gray for the axes, and red, orange, medium aquamarine, thistle 3, light blue, blue, plum and dark violet for eight plotting colors.

```
set terminal jpeg large font arial size 800,600
```

which searches for a TrueType font with face name 'arial' in the directory specified by the environment variable GDFONTPATH and large (14pt) font size.

47.39 Kyo

The **kyo** and **prescribe** terminal drivers support the Kyocera laser printer. The only difference between the two is that **kyo** uses "Helvetica" whereas **prescribe** uses "Courier". There are no options.

47.40 Latex

The latex and emtex drivers allow two options.

Syntax:

```
set terminal latex | emtex {courier | roman | default} {<fontsize>}
```

fontsize may be any size you specify. The default is for the plot to inherit its font setting from the embedding document.

Unless your driver is capable of building fonts at any size (e.g. dvips), stick to the standard 10, 11 and 12 point sizes.

METAFONT users beware: METAFONT does not like odd sizes.

All drivers for LaTeX offer a special way of controlling text positioning: If any text string begins with '{', you also need to include a '}' at the end of the text, and the whole text will be centered both horizontally and vertically. If the text string begins with '[', you need to follow this with a position specification (up to two out of t,b,l,r), ']{', the text itself, and finally '}'. The text itself may be anything LaTeX can typeset as an LR-box. '\rule{}{}'s may help for best positioning.

Points, among other things, are drawn using the LaTeX commands "\Diamond" and "\Box". These commands no longer belong to the LaTeX2e core; they are included in the latexsym package, which is part of the base distribution and thus part of any LaTeX implementation. Please do not forget to use this package.

Examples: About label positioning: Use gnuplot defaults (mostly sensible, but sometimes not really best):

```
set title '\LaTeX\ -- $ \gamma $'
```

Force centering both horizontally and vertically:

```
set label '{\LaTeX\ -- $ \gamma $}' at 0,0
```

```
Specify own positioning (top here):
    set xlabel '[t]{\LaTeX\ -- $ \gamma $}'
The other label - account for long ticlabels:
    set ylabel '[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{0pt}}'
```

47.41 Linux

The **linux** driver has no additional options to specify. It looks at the environment variable GSVG-AMODE for the default mode; if not set, it uses 1024x768x256 as default mode or, if that is not possible, 640x480x16 (standard VGA).

47.42 Macintosh

Several options may be set in the 'macintosh' driver.

Syntax:

```
set terminal macintosh {singlewin | multiwin} {vertical | novertical}
{size <width>, <height> | default}
```

'singlewin' limits the output to a single window and is useful for animations. 'multiwin' allows multiple windows. 'vertical' is only valid under the gx option. With this option, rotated text

```
be drawn vertically. novertical turns this option off.
size <width>, <height> overrides the graph size set in the preferences
dialog until it is cleared with either 'set term mac size default'
or 'set term mac default'.
```

'set term mac size default' sets the window size settings to those set in the preferences dialog.

```
'set term mac default' sets all options to their default values. Default values: nogx, multiwin, novertical.
```

If you generate graphs under the multiwin option and then switch to singlewin, the next plot command will cause one more window to be created. This new window will be reused as long as singlewin is in effect. If you switch back to multiwin, generate some graphs, and then switch to singlewin again, the orginal 'singlewin' window will be resused if it is still open. Otherwise a new 'singlewin' window will be created. The 'singlewin' window is not numbered.

47.43 Mf

The **mf** terminal driver creates an input file to the METAFONT program. Thus a figure may be used in the TeX document in the same way as is a character.

To use a picture in a document, the METAFONT program must be run with the output file from **gnuplot** as input. Thus, the user needs a basic knowledge of the font creating process and the procedure for including a new font in a document. However, if the METAFONT program is set up properly at the local site, an unexperienced user could perform the operation without much trouble.

The text support is based on a METAFONT character set. Currently the Computer Modern Roman font set is input, but the user is in principal free to choose whatever fonts he or she needs. The METAFONT source files for the chosen font must be available. Each character is stored in a separate picture variable in METAFONT. These variables may be manipulated (rotated, scaled etc.) when characters are needed. The drawback is the interpretation time in the METAFONT program. On some machines (i.e. PC) the limited amount of memory available may also cause problems if too many pictures are stored.

The **mf** terminal has no options.

47.43.1 METAFONT Instructions

Set your terminal to METAFONT: set terminal mfSelect an output-file, e.g.:

set output "myfigures.mf"

- Create your pictures. Each picture will generate a separate character. Its default size will be 5*3 inches. You can change the size by saying **set size 0.5,0.5** or whatever fraction of the default size you want to have.
- Quit gnuplot.
- Generate a TFM and GF file by running METAFONT on the output of **gnuplot**. Since the picture is quite large (5*3 in), you will have to use a version of METAFONT that has a value of at least 150000 for memmax. On Unix systems these are conventionally installed under the name bigmf. For the following assume that the command virmf stands for a big version of METAFONT. For example:
- Invoke METAFONT:
 virmf '&plain'
 Select the output device: At the METAFONT prompt ('*') type:
 \mode:=CanonCX; % or whatever printer you use
 Optionally select a magnification:
 mag:=1; % or whatever you wish
- Input the **gnuplot**-file: input myfigures.mf

On a typical Unix machine there will usually be a script called "mf" that executes virmf '&plain', so you probably can substitute mf for virmf &plain. This will generate two files: mfput.ffm and mfput.\$\$\$gf (where \$\$\$ indicates the resolution of your device). The above can be conveniently achieved by typing everything on the command line, e.g.: virmf '&plain' '\mode:=CanonCX; mag:=1; input myfigures.mf' In this case the output files will be named myfigures.tfm and myfigures.300gf.

- Generate a PK file from the GF file using gftopk: gftopk myfigures.300gf myfigures.300pk

The name of the output file for gftopk depends on the DVI driver you use. Ask your local TeX administrator about the naming conventions. Next, either install the TFM and PK files in the appropriate directories, or set your environment variables properly. Usually this involves setting TEXFONTS to include the current directory and doing the same thing for the environment variable that your DVI driver uses (no standard name here...). This step is necessary so that TeX will find the font metric file and your DVI driver will find the PK file.

- To include your pictures in your document you have to tell TeX the font: \font\gnufigs=myfigures

Each picture you made is stored in a single character. The first picture is character 0, the second is character 1, and so on... After doing the above step, you can use the pictures just like any other characters. Therefore, to place pictures 1 and 2 centered in your document, all you have to do is:

```
\centerline{\gnufigs\char0}
\centerline{\gnufigs\char1}
```

in plain TeX. For LaTeX you can, of course, use the picture environment and place the picture wherever you wish by using the \makebox and \put macros.

This conversion saves you a lot of time once you have generated the font; TeX handles the pictures as characters and uses minimal time to place them, and the documents you make change more often than the pictures do. It also saves a lot of TeX memory. One last advantage of using the METAFONT driver is that the DVI file really remains device independent, because no \special commands are used as in the eepic and tpic drivers.

47.44 Mgr

The **mgr** terminal driver supports the Mgr Window system. It has no options.

47.45 Mif

The **mif** terminal driver produces Frame Maker MIF format version 3.00. It plots in MIF Frames with the size 15*10 cm, and plot primitives with the same pen will be grouped in the same MIF group. Plot primitives in a **gnuplot** page will be plotted in a MIF Frame, and several MIF Frames are collected in one large MIF Frame. The MIF font used for text is "Times".

Several options may be set in the MIF 3.00 driver.

Syntax:

colour plots lines with line types >= 0 in colour (MIF sep. 2–7) and **monochrome** plots all line types in black (MIF sep. 0). **polyline** plots curves as continuous curves and **vectors** plots curves as collections of vectors. **help** and ? print online help on standard error output — both print a short description of the usage; **help** also lists the options.

Examples:

```
set term mif colour polylines  # defaults
set term mif  # defaults
set term mif vectors
set term mif help
```

47.46 Mp

The mp driver produces output intended to be input to the Metapost program. Running Metapost on the file creates EPS files containing the plots. By default, Metapost passes all text through TeX. This has the advantage of allowing essentially any TeX symbols in titles and labels.

Syntax:

The option **color** causes lines to be drawn in color (on a printer or display that supports it), **monochrome** (or nothing) selects black lines. The option **solid** draws solid lines, while **dashed** (or nothing) selects lines with different patterns of dashes. If **solid** is selected but **color** is not, nearly all lines will be identical. This may occasionally be useful, so it is allowed.

The option **notex** bypasses TeX entirely, therefore no TeX code can be used in labels under this option. This is intended for use on old plot files or files that make frequent use of common characters like \$ and % that require special handling in TeX.

The option **tex** sets the terminal to output its text for TeX to process.

The option latex sets the terminal to output its text for processing by LaTeX. This allows things like \frac for fractions which LaTeX knows about but TeX does not. Note that you must set the environment variable TEX to the name of your LaTeX executable (normally latex) if you use this option or use **mpost**

-tex=<name of LaTeX executable> Otherwise metapost will try and use TeX to process the text and it won't work.

Changing font sizes in TeX has no effect on the size of mathematics, and there is no foolproof way to make such a change, except by globally setting a magnification factor. This is the purpose of the **magnification** option. It must be followed by a scaling factor. All text (NOT the graphs) will be scaled by this factor. Use this if you have math that you want at some size other than the default 10pt. Unfortunately, all math will be the same size, but see the discussion below on editing the MP output. **mag** will also work under **notex** but there seems no point in using it as the font size option (below) works as well.

The option **psnfss** uses postscript fonts in combination with LaTeX. Since this option only makes sense, if LaTeX is being used, the **latex** option is selected automatically. This option includes the following packages for LaTeX: inputenc(latin1), fontenc(T1), mathptmx, helvet(scaled=09.2), courier, latexsym and textcomp.

The option **psnfss-version7** uses also postscript fonts in LaTeX (option **latex** is also automatically selected), but uses the following packages with LaTeX: inputenc(latin1), fontenc(T1), times, mathptmx, helvet and courier.

The option **nopsnfss** is the default and uses the standard font (cmr10 if not otherwise specified).

The option **prologues** takes a value as an additional argument and adds the line **prologues**:=<**value**> to the metapost file. If a value of **2** is specified metapost uses postscript fonts to generate the eps-file, so that the result can be viewed using e.g. ghostscript. Normally the output of metapost uses TeX fonts and therefore has to be included in a (La)TeX file before you can look at it.

The option **noprologues** is the default. No additional line specifying the prologue will be added.

The option **a4paper** adds a **[a4paper]** to the document lass. Normally letter paper is used (default). Since this option is only used in case of LaTeX, the **latex** option is selected automatically.

The option **amstex** automatically selects the **latex** option and includes the following LaTeX packages: amsfonts, amsmath(intlimits). By default these packages are not included.

A name in quotes selects the font that will be used when no explicit font is given in a **set label** or **set title**. A name recognized by TeX (a TFM file exists) must be used. The default is "cmr10" unless **notex** is selected, then it is "pcrr8r" (Courier). Even under **notex**, a TFM file is needed by Metapost. The file **pcrr8r.tfm** is the name given to Courier in LaTeX's psnfss package. If you change the font from the **notex** default, choose a font that matches the ASCII encoding at least in the range 32-126. **cmtt10** almost works, but it has a nonblank character in position 32 (space).

The size can be any number between 5.0 and 99.99. If it is omitted, 10.0 is used. It is advisable to use **magstep** sizes: 10 times an integer or half-integer power of 1.2, rounded to two decimals, because those are the most available sizes of fonts in TeX systems.

All the options are optional. If font information is given, it must be at the end, with size (if present) last. The size is needed to select a size for the font, even if the font name includes size information. For example, **set term mp "cmtt12"** selects cmtt12 shrunk to the default size 10. This is probably not what you want or you would have used cmtt10.

The following common ascii characters need special treatment in TeX:

The five characters \$, #, &, $_$, and % can simply be escaped, e.g., \$. The three characters <, >, and | can be wrapped in math mode, e.g., \$<\$. The remainder require some TeX work-arounds. Any good book on TeX will give some guidance.

If you type your labels inside double quotes, backslashes in TeX code need to be escaped (doubled). Using single quotes will avoid having to do this, but then you cannot use \n for line breaks. As of this writing, version 3.7 of gnuplot processes titles given in a **plot** command differently than in other places, and backslashes in TeX commands need to be doubled regardless of the style of quotes.

Metapost pictures are typically used in TeX documents. Metapost deals with fonts pretty much the same way TeX does, which is different from most other document preparation programs. If the picture is included in a LaTeX document using the graphics package, or in a plainTeX document via epsf.tex,

and then converted to PostScript with dvips (or other dvi-to-ps converter), the text in the plot will usually be handled correctly. However, the text may not appear if you send the Metapost output as-is to a PostScript interpreter.

47.46.1 Metapost Instructions

- Set your terminal to Metapost, e.g.: set terminal mp mono "cmtt12" 12
- Select an output-file, e.g.:
 set output "figure.mp"
- Create your pictures. Each plot (or multiplot group) will generate a separate Metapost beginfig...endfig group. Its default size will be 5 by 3 inches. You can change the size by saying **set size 0.5,0.5** or whatever fraction of the default size you want to have.
- Quit gnuplot.
- Generate EPS files by running Metapost on the output of gnuplot:

```
mpost figure.mp OR mp figure.mp
```

The name of the Metapost program depends on the system, typically **mpost** for a Unix machine and **mp** on many others. Metapost will generate one EPS file for each picture.

- To include your pictures in your document you can use the graphics package in LaTeX or epsf.tex in plainTeX:

If you use a driver other than dvips for converting TeX DVI output to PS, you may need to add the following line in your LaTeX document:

```
\DeclareGraphicsRule{*}{eps}{*}{}
```

Each picture you made is in a separate file. The first picture is in, e.g., figure.0, the second in figure.1, and so on.... To place the third picture in your document, for example, all you have to do is:

```
\includegraphics{figure.2} % LaTeX
\epsfbox{figure.2} % plainTeX
```

The advantage, if any, of the mp terminal over a postscript terminal is editable output. Considerable effort went into making this output as clean as possible. For those knowledgeable in the Metapost language, the default line types and colors can be changed by editing the arrays <code>lt[]</code> and <code>col[]</code>. The choice of solid vs dashed lines, and color vs black lines can be change by changing the values assigned to the booleans <code>dashedlines</code> and <code>colorlines</code>. If the default <code>tex</code> option was in effect, global changes to the text of labels can be achieved by editing the <code>vebatimtex...etex</code> block. In particular, a LaTeX preamble can be added if desired, and then LaTeX's built-in size changing commands can be used for maximum flexibility. Be sure to set the appropriate MP configuration variable to force Metapost to run LaTeX instead of plainTeX.

47.47 Mtos

The **mtos** terminal has no options. It sends data via a pipe to an external program called GPCLIENT. It runs under MULTITOS, Magic 3.x, MagicMAC. and MiNT. If you cannot find GPCLIENT, than mail to dirk@lstm.uni-erlangen.de.

47.48 Next

Several options may be set in the next driver.

Syntax:

where <mode> is **default**, which sets all options to their defaults; <type> is either **new** or **old**, where **old** invokes the old single window; <color> is either **color** or **monochrome**; <dashed> is either **solid** or **dashed**; "<fontname>" is the name of a valid PostScript font; <fontsize> is the size of the font in PostScript points; and <title> is the title for the GnuTerm window. Defaults are **new**, **monochrome**, **dashed**, "Helvetica", 14pt.

Examples:

```
set term next default
set term next 22
set term next color "Times-Roman" 14
set term next color "Helvetica" 12 title "MyPlot"
set term next old
```

Pointsizes may be changed with set linestyle.

47.49 Openstep (next)

Several options may be set in the openstep (next) driver.

Syntax:

where <mode> is **default**, which sets all options to their defaults; <type> is either **new** or **old**, where **old** invokes the old single window; <color> is either **color** or **monochrome**; <dashed> is either **solid** or **dashed**; "<fontname>" is the name of a valid PostScript font; <fontsize> is the size of the font in PostScript points; and <title> is the title for the GnuTerm window. Defaults are **new**, **monochrome**, **dashed**, "Helvetica", 14pt.

Examples:

```
set term openstep default
set term openstep 22
set term openstep color "Times-Roman" 14
set term openstep color "Helvetica" 12 title "MyPlot"
set term openstep old
```

Pointsizes may be changed with **set linestyle**.

47.50 Pbm

Several options may be set in the **pbm** terminal — the driver for PBMplus.

Syntax:

```
set terminal pbm {<fontsize>} {<mode>}
```

where <fontsize> is **small**, **medium**, or **large** and <mode> is **monochrome**, **gray** or **color**. The default plot size is 640 pixels wide and 480 pixels high; this may be changed by **set size**.

The output of the **pbm** driver depends upon <mode>: **monochrome** produces a portable bitmap (one bit per pixel), **gray** a portable graymap (three bits per pixel) and **color** a portable pixmap (color, four bits per pixel).

The output of this driver can be used with Jef Poskanzer's excellent PBMPLUS package, which provides programs to convert the above PBMPLUS formats to GIF, TIFF, MacPaint, Macintosh PICT, PCX, X11 bitmap and many others. PBMPLUS may be obtained from ftp.x.org. The relevant files have names that begin with "netpbm-1mar1994.p1"; they reside in /contrib/utilities. The package can probably also be obtained from one of the many sites that mirrors ftp.x.org.

Examples:

```
set terminal pbm small monochrome # defaults set size 2,2; set terminal pbm color medium
```

47.51 Pdf

This terminal produces files in the Adobe Portable Document Format (PDF), useable for printing or display with tools like Acrobat Reader

Syntax:

where is the name of the default font to use (default Helvetica) and <fontsize> is the font size (in points, default 12). For documentation on what fonts are available and how to add new fonts, please see your local pdflib documentation.

The **enhanced** option enables enhanced text processing features (subscripts, superscripts and mixed fonts). See **enhanced** (p. 163).

The width of all lines in the plot can be increased by the factor <n> specified in **linewidth**. **butt** (default) means butt caps and mitred joins; **rounded** sets line caps and line joins to be rounded.

47.52 Pm

The **pm** terminal driver provides an OS/2 Presentation Manager window in which the graph is plotted. The window is opened when the first graph is plotted. This window has its own online help as well as facilities for printing, copying to the clipboard and some line type and color adjustments. The **multiplot** option is supported.

Syntax:

```
set terminal pm {server {n}} {persist} {widelines} {enhanced} {"title"}
```

If **persist** is specified, each graph appears in its own window and all windows remain open after **gnuplot** exits. If **server** is specified, all graphs appear in the same window, which remains open when **gnuplot** exits. This option takes an optional numerical argument which specifies an instance of the server process. Thus multiple server windows can be in use at the same time.

If widelines is specified, all plots will be drawn with wide lines. If enhanced is specified, sub- and superscripts and multiple fonts are enabled using the same syntax as the enhanced postscript option (see set terminal postscript enhanced (p. 163) for details). Font names for the basic PostScript fonts may be abbreviated to single letters.

If **title** is specified, it will be used as the title of the plot window. It will also be used as the name of the server instance, and will override the optional numerical argument.

Linewidths may be changed with **set linestyle**.

47.53 Png (NEW)

Syntax:

```
set terminal png
     {{no}transparent} {{no}interlace}
     {{no}truecolor}
     {tiny | small | medium | large | giant}
     {font <face> {<pointsize>}}
     {size <x>,<y>} {{no}crop}
     {{no}enhanced}
     {<color0> <color1> <color2> ...}
```

PNG images are created using libgd, with optional support for TrueType and Adobe Type 1 fonts via libfreetype. Version 1.8 or greater of libgd is required.

transparent instructs the driver to generate transparent PNGs. The first color will be the transparent one. Default is **notransparent**.

interlace instructs the driver to generate interlaced PNGs. Default is nointerlace.

Five basic fonts are supported directly by the gd library. These are **tiny** (5x8 pixels), **small** (6x12 pixels), **medium**, (7x13 Bold), **large** (8x16) or **giant** (9x15 pixels). These fonts cannot be scaled or rotated (pure horizontal or vertical text only).

If gnuplot was built with support for TrueType (*.ttf) or Adobe Type 1 (*.pfa) fonts, they may be selected using the 'font <face> {<pointsize>}' option. <face> is either the full pathname to the font file, or a font face name that is assumed to be the first part of a filename in one of the directories listed in the GDFONTPATH environmental variable. That is, 'set term png font "Face"' will look for a font file named either <somedirectory>/Face.ttf or <somedirectory>/Face.pfa. Both TrueType and Adobe Type 1 fonts are fully scalable and may be rotated through any angle. If no font is specified, gnuplot checks the environmental variable GNUPLOT_DEFAULT_GDFONT to see if there is a preferred default font

enhanced enables the enhanced text processing features, (subscripts, superscripts and mixed fonts). See **enhanced** (**p. 163**) for more information. The full enhanced mode syntax is supported by the PNG/JPEG driver itself, but some of these features are dependent on which version of the underlying libgd library is present, and which fonts are available.

The size $\langle x,y \rangle$ is given in pixels — it defaults to 640x480. The number of pixels can be also modified by scaling with the **set size** command. **crop** trims blank space from the edges of the completed plot, resulting in a smaller final image size. Default is **nocrop**.

Each color must be of the form 'xrrggbb', where x is the literal character 'x' and 'rrggbb' are the red, green and blue components in hex. For example, 'x00ff00' is green. The background color is set first, then the border colors, then the X & Y axis colors, then the plotting colors. The maximum number of colors that can be set is 256.

Examples:

which uses white for the non-transparent background, black for borders, gray for the axes, and red, orange, medium aquamarine, thistle 3, light blue, blue, plum and dark violet for eight plotting colors.

```
set terminal png font arial 14 size 800,600
```

which searches for a TrueType font with face name 'arial' in the directory specified by the environment variable GDFONTPATH and 14pt font size.

which uses white for the transparent background, black for borders, dark gray for axes, and a gray-scale for the six plotting colors.

47.54 Postscript

Several options may be set in the **postscript** driver.

Syntax:

```
{fontfile [add | delete] "<filename>"}
{default}
{level1 | leveldefault}
{color | colour | monochrome}
{solid | dashed}
{dashlength | dl <DL>}
{linewidth | lw <LW>}
{rounded | butt}
{palfuncparam <samples>{,<maxdeviation>}}
{blacktext | colortext | colourtext}
{"<fontname>"} {<fontsize>}
```

landscape and portrait choose the plot orientation. eps mode generates EPS (Encapsulated PostScript) output, which is just regular PostScript with some additional lines that allow the file to be imported into a variety of other applications. (The added lines are PostScript comment lines, so the file may still be printed by itself.) To get EPS output, use the eps mode and make only one plot per file. In eps mode the whole plot, including the fonts, is reduced to half of the default size.

enhanced enables enhanced text mode features (subscripts, superscripts and mixed fonts). See enhanced (p. 163) for more information. blacktext forces all text to be written in black even in color mode;

Duplexing in PostScript is the ability of the printer to print on both sides of the same sheet of paper. With **defaultplex**, the default setting of the printer is used; with **simplex** only one side is printed; **duplex** prints on both sides (ignored if your printer can't do it).

"<fontname>" is the name of a valid PostScript font; and <fontsize> is the size of the font in PostScript points. In addition to the standard postscript fonts, an oblique version of the Symbol font, useful for mathematics, is defined. It is called "Symbol-Oblique".

default sets all options to their defaults: landscape, monochrome, dashed, dl 1.0, lw 1.0, defaultplex, noenhanced, "Helvetica" and 14pt. Default size of a PostScript plot is 10 inches wide and 7 inches high. The option color enables color; solid draws all plots with solid lines, overriding any dashed patterns; dashlength or dl scales the length of the dashed-line segments by <DL> (which is a floating-point number greater than zero); linewidth or lw scales all linewidths by <LW>;

By default the generated PostScript code uses language features that were introduced in PostScript Level 2, notably pattern-fill of irregular objects such as filledcurves. The **level1** option substitutes PostScript Level 1 approximations of these features. This may be required by some old printers and by some old versions of Adobe Illustrator. This flag can be toggled later by editing a single line in the PostScript output file.

rounded sets line caps and line joins to be rounded; butt is the default, butt caps and mitered joins;

palfuncparam is only available if compiled with pm3d support. It controls how set palette functions are encoded as gradients in the output. Analytic color component functions (set via set palette functions) are encoded as linear interpolated gradients in the postscript output: The color component functions are sampled at <samples> points and all points are removed from this gradient which can be removed without changing the resulting colors by more than <maxdeviation>. For almost every useful palette you may savely leave the defaults of <samples>=2000 and <maxdeviation>=0.003 untouched.

Fonts listed by **fontfile** or **fontfile** add encapsulate the font definitions of the listed font from a postscript Type 1 or TrueType font file directly into the gnuplot output postscript file. Thus, the enclosed font can be used in labels, titles, etc. See the section **postscript fontfile** (p. 164) for more details. With **fontfile** delete a fontfile is deleted from the list of embedded files.

Examples:

```
set terminal postscript default # old postscript
set terminal postscript enhanced # old enhpost
set terminal postscript landscape 22 # old psbig
set terminal postscript eps 14 # old epsf1
set terminal postscript eps 22 # old epsf2
set size 0.7,1.4; set term post portrait color "Times-Roman" 14
```

set term post "VAGRoundedBT_Regular" 14 fontfile "bvrr8a.pfa"

Linewidths and pointsizes may be changed with **set style line**.

The **postscript** driver supports about 70 distinct pointtypes, selectable through the **pointtype** option on **plot** and **set style line**.

Several possibly useful files about **gnuplot**'s PostScript are included in the /docs/psdoc subdirectory of the **gnuplot** distribution and at the distribution sites. These are "ps_symbols.gpi" (a **gnuplot** command file that, when executed, creates the file "ps_symbols.ps" which shows all the symbols available through the **postscript** terminal), "ps_guide.ps" (a PostScript file that contains a summary of the enhanced syntax and a page showing what the octal codes produce with text and symbol fonts), "ps_file.doc" (a text file that contains a discussion of the organization of a PostScript file written by **gnuplot**), and "ps_fontfile_doc.tex" (a LaTeX file which contains a short documentation concerning the encapsulation of LaTeX fonts with a glyph table of the math fonts).

A PostScript file is editable, so once **gnuplot** has created one, you are free to modify it to your heart's desire. See the **editing postscript** (p. 164) section for some hints.

47.54.1 Enhanced postscript

Several terminal types support an enhanced text mode in which additional formatting information is embedded in the text string.

Enhanced Text Control Codes		
Control	Examples	Explanation
^	a^x	superscript
_	a_x	subscript
0	0x or a0^b_c	phantom box (occupies no width)
&	&{space}	inserts space of specified length
~	~a{.8-}	overprints '-' on 'a', raised by .8
		times the current fontsize

Braces can be used to place multiple-character text where a single character is expected (e.g., 2^{10}). To change the font and/or size, use the full form: {/[fontname][=fontsize | *fontscale] text}. Thus {/Symbol=20 G} is a 20-point GAMMA and {/*0.75 K} is a K at three-quarters of whatever fontsize is currently in effect. (The '/' character MUST be the first character after the '{'}.)

If the encoding vector has been changed by **set encoding**, the default encoding vector can be used instead by following the slash with a dash. This is unnecessary if you use the Symbol font, however — since /Symbol uses its own encoding vector, **gnuplot** will not apply any other encoding vector to it.

The phantom box is useful for a@^b_c to align superscripts and subscripts but does not work well for overwriting an accent on a letter. (To do the latter, it is much better to use 'set encoding iso_8859_1' to change to the ISO Latin-1 encoding vector, which contains a large variety of letters with accents or other diacritical marks.) Since the box is non-spacing, it is sensible to put the shorter of the subscript or superscript in the box (that is, after the @).

Space equal in length to a string can be inserted using the '&' character. Thus

'abc&{def}ghi'

would produce

'abc ghi'.

The '~' character causes the next character or bracketed text to be overprinted by the following character or bracketed text. The second text will be horizontally centered on the first. Thus '~ a/' will result in an 'a' with a slash through it. You can also shift the second text vertically by preceding the second text with a number, which will define the fraction of the current fontsize by which the text will be raised or lowered. In this case the number and text must be enclosed in brackets because more than one character is necessary. If the overprinted text begins with a number, put a space between the vertical offset and

the text ('~ {abc}{.5 000}'); otherwise no space is needed ('~ {abc}{.5 — }'). You can change the font for one or both strings ('~ a{.5 /*.2 o}' — an 'a' with a one-fifth-size 'o' on top — and the space between the number and the slash is necessary), but you can't change it after the beginning of the string. Neither can you use any other special syntax within either string. You can, of course, use control characters by escaping them (see below), such as '~ a{\^}'

You can access special symbols numerically by specifying \character-code (in octal), e.g., {\Symbol \245} is the symbol for infinity.

You can escape control characters using \setminus , e.g., $\setminus\setminus$, \setminus , and so on.

But be aware that strings in double-quotes are parsed differently than those enclosed in single-quotes. The major difference is that backslashes may need to be doubled when in double-quoted strings.

Examples (these are hard to describe in words — try them!):

The file "ps_guide.ps" in the /docs/psdoc subdirectory of the **gnuplot** source distribution contains more examples of the enhanced syntax.

47.54.2 Editing postscript

The PostScript language is a very complex language — far too complex to describe in any detail in this document. Nevertheless there are some things in a PostScript file written by **gnuplot** that can be changed without risk of introducing fatal errors into the file.

For example, the PostScript statement "/Color true def" (written into the file in response to the command set terminal postscript color), may be altered in an obvious way to generate a black-and-white version of a plot. Similarly line colors, text colors, line weights and symbol sizes can also be altered in straightforward ways. Text (titles and labels) can be edited to correct misspellings or to change fonts. Anything can be repositioned, and of course anything can be added or deleted, but modifications such as these may require deeper knowledge of the PostScript language.

The organization of a PostScript file written by **gnuplot** is discussed in the text file "ps_file.doc" in the docs/ps subdirectory of the gnuplot source distribution.

47.54.3 Postscript fontfile

The **fontfile** or **fontfile add** option takes one file name as argument and encapsulates this file into the postscript output in order to make this font available for text elements (labels, tic marks, titles, etc.). The **fontfile delete** option also takes one file name as argument. It deletes this file name from the list of encapsulated files.

The postscript terminal understands some font file formats: Type 1 fonts in ASCII file format (extension ".pfa"), Type 1 fonts in binary file format (extension ".pfb"), and TrueType fonts (extension ".ttf"). Pfa files are understood directly, pfb and ttf files are converted on the fly if appropriate conversion tools are installed (see below). You have to specify the full filename with the extension. Each **fontfile** option takes exact one font file name. This option can be used multiple times in order to include more than one font file.

The font file is searched in the working directory and in all directories listed in the fontpath which is determined by **set fontpath**. In addition, the fontpath can be set using the environment variable GNUPLOT_FONTPATH. If this is not set a system dependent default search list is used. See **set fontpath** (p. 78) for more details.

For using the encapsulated font file you have to specify the font name (which normally is not the same as the file name). When embedding a font file by using the **fontfile** option in interactive mode, the font name is printed on the screen. E.g.

```
Font file 'p0520041.pfb' contains the font 'URWPalladioL-Bold'. Location: /usr/lib/X11/fonts/URW/p0520041.pfb
```

When using pfa or pfb fonts, you can also find it out by looking into the font file. There is a line similar to "/FontName /URWPalladioL-Bold def". The middle string without the slash is the fontname, here "URWPalladioL-Bold". For TrueType fonts, this is not so easy since the font name is stored in a binary format. In addition, they often have spaces in the font names which is not supported by Type 1 fonts (in which a TrueType is converted on the fly). The font names are changed in order to eliminate the spaces in the fontnames. The easiest way to find out which font name is generated for use with gnuplot, start gnuplot in interactive mode and type in "set terminal postscript fontfile '<filename.ttf>'".

For converting font files to pfa format the conversion tool has to read the font from a file and write it to standard output. For pfb files "pfbtops" is a tool which can do this. If this program is installed on your system the on the fly conversion should work. Just try to encapsulate a pfb file. If the compiled in program call does not work correctly you can specify how this program is called by defining the environment variable GNUPLOT_PFBTOPFA e.g. to "pfbtops %s". The %s will be repeated by the font file name and thus has to exist in the string. If you don't want to do the conversion on the fly but get a pfa file of the font you can use the tool "pfb2pfa" which is written in simple c and should compile with any c compiler. It is available from many ftp servers, e.g.

ftp://ftp.dante.de/tex-archive/fonts/utilities/ps2mf/

In fact, "pfbtopfa" and "pfb2ps" do the same job. "pfbtopfa" puts the resulting pfa code into a file, whereas "pfbtops" writes it to standard output.

TrueType fonts are converted into Type 1 pfa format, e.g. by using the tool "ttf2pt1" which is available from

```
http://ttf2pt1.sourceforge.net/
```

If the builtin conversion does not work, the conversion command can be changed by the environment variable GNUPLOT_TTFTOPFA. For usage with ttf2pt1 it may be set to "ttf2pt1 -a -e -W 0 %s - ". Here again, %s stands for the file name.

For special purposes you also can use a pipe (if available for your operating system). Therefore you start the file name definition with the character "<" and append a program call. This program has to write pfa data to standard output. Thus, a pfa file may be accessed by **set fontfile** "< **cat garamond.pfa**".

For example, including Type 1 font files can be used for including the postscript output in LaTeX documents. The "european computer modern" font (which is a variant of the "computer modern" font) is available in pfb format from any CTAN server, e.g.

```
ftp://ftp.dante.de/tex-archive/fonts/ps-type1/cm-super/
```

For example, the file "sfrm1000.pfb" contains the normal upright fonts with serifs in the design size 10pt (font name "SFRM1000"). The computer modern fonts, which are still necessary for mathematics, are available from

```
ftp://ftp.dante.de/tex-archive/fonts/cm/ps-type1/bluesky
```

With these you can use any character available in TeX. However, the computer modern fonts have a strange encoding. (This is why you should not use cmr10.pfb for text, but sfrm1000.pfb instead.) The usage of TeX fonts is shown in one of the demos. The file "ps_fontfile_doc.tex" in the /docs/psdoc subdirectory of the **gnuplot** source distribution contains a table with glyphs of the TeX mathfonts.

If the font "CMEX10" is embedded (file "cmex10.pfb") gnuplot defines the additional font "CMEX10-Baseline". It is shifted vertically in order to fit better to the other glyphs (CMEX10 has its baseline at the top of the symbols).

47.55 Pslatex and pstex

The **pslatex** driver generates output for further processing by LaTeX, while the **pstex** driver generates output for further processing by TeX. **pslatex** uses \specials understandable by dvips and xdvi. Figures generated by **pstex** can be included in any plain-based format (including LaTeX).

Syntax:

```
{oldstyle | newstyle}
{auxfile | noauxfile}
{default}
{level1 | leveldefault}
{color | colour | monochrome}
{solid | dashed}
{dashlength | dl <DL>}
{linewidth | lw <LW>}
{rounded | butt}
{palfuncparam <samples>{,<maxdeviation>}}
{<font_size>}
```

The option **color** enables color; **solid** draws all plots with solid lines, overriding any dashed patterns; **dashlength** or **dl** scales the length of the dashed-line segments by <DL> (which is a floating-point number greater than zero); **linewidth** or **lw** scales all linewidths by <LW>;

By default the generated PostScript code uses language features that were introduced in PostScript Level 2, notably pattern-fill of irregular objects such as filledcurves. The **level1** option substitutes PostScript Level 1 approximations of these features. This may be required by some old printers and by some old versions of Adobe Illustrator. This flag can be toggled later by editing a single line in the PostScript output file.

rounded sets line caps and line joins to be rounded; butt is the default, butt caps and mitered joins;

palfuncparam is only available if compiled with pm3d support. It controls how set palette functions are encoded as gradients in the output. Analytic color component functions (set via set palette functions) are encoded as linear interpolated gradients in the postscript output: The color component functions are sampled at <samples> points and all points are removed from this gradient which can be removed without changing the resulting colors by more than <maxdeviation>. For almost every useful palette you may savely leave the defaults of <samples>=2000 and <maxdeviation>=0.003 untouched.

if **rotate** is specified, the y-axis label is rotated. <font_size> is the size (in pts) of the desired font.

If auxfile is specified, it directs the driver to put the PostScript commands into an auxiliary file instead of directly into the LaTeX file. This is useful if your pictures are large enough that dvips cannot handle them. The name of the auxiliary PostScript file is derived from the name of the TeX file given on the set output command; it is determined by replacing the trailing .tex (actually just the final extent in the file name) with .ps in the output file name, or, if the TeX file has no extension, .ps is appended. The .ps is included into the .tex file by a \special{psfile=...} command. Remember to close the output file before next plot unless in multiplot mode.

Gnuplot versions prior version 4.1 have generated plots of the size 5 x 3 inches using the ps(la)tex terminal while the current version generates 5 x 3.5 inches to be consistent with the postscript eps terminal. In addition, the character width is now estimated to be 60% of the font size while the old epslatex terminal used 50%. To reach the old format specify the option **oldstyle**.

The pslatex driver offers a special way of controlling text positioning: (a) If any text string begins with '{', you also need to include a '}' at the end of the text, and the whole text will be centered both horizontally and vertically by LaTeX. (b) If the text string begins with '[', you need to continue it with: a position specification (up to two out of t,b,l,r), ']{', the text itself, and finally, '}'. The text itself may be anything LaTeX can typeset as an LR-box. \rule{}{}'s may help for best positioning.

The options not described here are identical to the **Postscript terminal**. Look there if you want to know what they do.

Examples:

```
set term pslatex monochrome dashed rotate # set to defaults

To write the PostScript commands into the file "foo.ps":

set term pslatex auxfile
set output "foo.tex"; plot ...; set output

About label positioning: Use gnuplot defaults (mostly sensible, but sometimes not really best):
set title '\LaTeX\ -- $ \gamma $'
```

Force centering both horizontally and vertically:

```
set label '{\LaTeX\ -- $ \gamma $}' at 0,0
```

Specify own positioning (top here):

```
set xlabel '[t]{\LaTeX\ -- $ \gamma $}'
```

The other label – account for long ticlabels:

```
set ylabel '[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{0pt}}'
```

Linewidths and pointsizes may be changed with **set style line**.

47.56 Pstricks

The **pstricks** driver is intended for use with the "pstricks.sty" macro package for LaTeX. It is an alternative to the **eepic** and **latex** drivers. You need "pstricks.sty", and, of course, a printer that understands PostScript, or a converter such as Ghostscript.

PSTricks is available via anonymous ftp from the /pub directory at Princeton.edu. This driver definitely does not come close to using the full capability of the PSTricks package.

Syntax:

```
set terminal pstricks {hacktext | nohacktext} {unit | nounit}
```

The first option invokes an ugly hack that gives nicer numbers; the second has to do with plot scaling. The defaults are **hacktext** and **nounit**.

47.57 Qms

The **qms** terminal driver supports the QMS/QUIC Laser printer, the Talaris 1200 and others. It has no options.

47.58 Regis

The **regis** terminal device generates output in the REGIS graphics language. It has the option of using 4 (the default) or 16 colors.

Syntax:

```
set terminal regis {4 | 16}
```

47.59 Rgip

The **rgip** and **uniplex** terminal drivers support RGIP metafiles. They can combine several graphs on a single page, but only one page is allowed in a given output file.

Syntax:

permissible values for the font size are in the range 1–8, with the default being 1. The default layout is landscape. Graphs are placed on the page in a **horizxvert** grid, which defaults to [1,1].

Example:

```
set terminal uniplex portrait [2,3]
```

puts six graphs on a page in three rows of two in portrait orientation.

47.60 Sun

The sun terminal driver supports the SunView window system. It has no options.

47.61 Svg

This terminal produces files in the W3C Scalable Vector Graphics format.

Syntax:

where $\langle x \rangle$ and $\langle y \rangle$ are the size of the SVG plot to generate, **dynamic** allows a svg-Viewer to resize plot, whereas the default setting, **fixed**, will request an absolute size.

linewidth <w> increases the width of all lines used in the figure by a factor of <w>.

 is the name of the default font to use (default Arial) and <fontsize> is the font size (in points, default 12). Gnuplot does not currently provide a mechanism for embedding fonts in the output file, so svg viewing programs may substitute other fonts when the file is displayed.

The svg terminal supports an enhanced text mode, which allows font and other formatting commands to be embedded in labels and other text strings. The enhanced text mode syntax is shared with other gnuplot terminal types. See **enhanced** (**p. 163**) for more details.

SVG allows you to embed fonts directly into an SVG document, or to provide a hypertext link to the desired font. The **fontfile** option specifies a local file which is copied into the <defs> section of the resulting SVG output file. This file may either itself contain a font, or may contain the records necessary to create a hypertext reference to the desired font. Gnuplot will look for the requested file using the directory list in the GNUPLOT_FONTPATH environmental variable.

47.62 Svga

The **svga** terminal driver supports PCs with SVGA graphics. It can only be used if it is compiled with DJGPP. Its only option is the font.

Syntax:

```
set terminal svga {"<fontname>"}
```

47.63 Table

Instead of producing a graph, the **table** terminal prints out the points on which a graph would be based, i.e., the results of processing the **plot** or **splot** command, in a multicolumn ASCII table of X Y {Z} R values. The character R takes on one of three values: "i" if the point is in the active range, "o" if it is out-of-range, or "u" if it is undefined. The data format is determined by the format of the axis labels (see **set format** (p. 78)), and the columns are separated by single spaces.

For those times when you want the numbers, you can display them on the screen or save them to a file. This can be useful if you want to generate contours and then save them for further use, perhaps for plotting with **plot**; see **set contour** (**p. 73**) for an example. The same method can be used to save interpolated data (see **set samples** (**p. 104**) and **set dgrid3d** (**p. 76**)).

47.64 Tek 40

This family of terminal drivers supports a variety of VT-like terminals. **tek40xx** supports Tektronix 4010 and others as well as most TEK emulators; **vttek** supports VT-like tek40xx terminal emulators; **kc-tek40xx** supports MS-DOS Kermit Tek4010 terminal emulators in color: **km-tek40xx** supports them

in monochrome; **selanar** supports Selanar graphics; and **bitgraph** supports BBN Bitgraph terminals. None have any options.

47.65 Tek410x

The **tek410**x terminal driver supports the 410x and 420x family of Tektronix terminals. It has no options.

47.66 Texdraw

The **texdraw** terminal driver supports the LaTeX texdraw environment. It is intended for use with "texdraw.sty" and "texdraw.tex" in the texdraw package.

Points, among other things, are drawn using the LaTeX commands "\Diamond" and "\Box". These commands no longer belong to the LaTeX2e core; they are included in the latexsym package, which is part of the base distribution and thus part of any LaTeX implementation. Please do not forget to use this package.

It has no options.

47.67 Tgif

Tgif is an X11-based drawing tool — it has nothing to do with GIF.

The **tgif** driver supports different pointsizes (with **set pointsize**), different label fonts and font sizes (e.g. **set label "Hallo" at x,y font "Helvetica,34"**) and multiple graphs on the page. The proportions of the axes are not changed.

Syntax:

where $\langle [x,y] \rangle$ specifies the number of graphs in the x and y directions on the page, **color** enables color, **linewidth** scales all linewidths by $\langle LW \rangle$, " $\langle fontname \rangle$ " is the name of a valid PostScript font, and $\langle fontsize \rangle$ specifies the size of the PostScript font. **defaults** sets all options to their defaults: **portrait**, [1,1], **color**, **linwidth 1.0**, **dashed**, "**Helvetica**", and 18.

The **solid** option is usually preferred if lines are colored, as they often are in the editor. Hardcopy will be black-and-white, so **dashed** should be chosen for that.

Multiplot is implemented in two different ways.

The first multiplot implementation is the standard gnuplot multiplot feature:

```
set terminal tgif
set output "file.obj"
set multiplot
set origin x01,y01
set size xs,ys
plot ...
set origin x02,y02
plot ...
unset multiplot
```

See set multiplot (p. 91) for further information.

The second version is the [x,y] option for the driver itself. The advantage of this implementation is that everything is scaled and placed automatically without the need for setting origins and sizes; the graphs keep their natural x/y proportions of 3/2 (or whatever is fixed by **set size**).

If both multiplot methods are selected, the standard method is chosen and a warning message is given. Examples of single plots (or standard multiplot):

```
set terminal tgif # defaults
set terminal tgif "Times-Roman" 24
set terminal tgif landscape
set terminal tgif landscape solid
```

Examples using the built-in multiplot mechanism:

```
set terminal tgif portrait [2,4] # portrait; 2 plots in the x-
# and 4 in the y-direction
set terminal tgif [1,2] # portrait; 1 plot in the x-
# and 2 in the y-direction
set terminal tgif landscape [3,3] # landscape; 3 plots in both
# directions
```

47.68 Tkcanvas

This terminal driver generates Tk canvas widget commands based on Tcl/Tk (default) or Perl. To use it, rebuild **gnuplot** (after uncommenting or inserting the appropriate line in "term.h"), then

```
gnuplot> set term tkcanvas {perltk} {interactive}
gnuplot> set output 'plot.file'
```

After invoking "wish", execute the following sequence of Tcl/Tk commands:

```
% source plot.file
% canvas .c
% pack .c
% gnuplot .c

Or, for Perl/Tk use a program like this:
use Tk;
my $top = MainWindow->new;
my $c = $top->Canvas->pack;
my $gnuplot = do "plot.pl";
$gnuplot->($c);
MainLoop;
```

The code generated by **gnuplot** creates a procedure called "gnuplot" that takes the name of a canvas as its argument. When the procedure is called, it clears the canvas, finds the size of the canvas and draws the plot in it, scaled to fit.

For 2-dimensional plotting (**plot**) two additional procedures are defined: "gnuplot_plotarea" will return a list containing the borders of the plotting area "xleft, xright, ytop, ybot" in canvas screen coordinates, while the ranges of the two axes "x1min, x1max, y1min, y1max, x2min, x2max, y2min, y2max" in plot coordinates can be obtained calling "gnuplot_axisranges". If the "interactive" option is specified, mouse clicking on a line segment will print the coordinates of its midpoint to stdout. Advanced actions can happen instead if the user supplies a procedure named "user_gnuplot_coordinates", which takes the following arguments: "win id x1s y1s x2s y2s x1e y1e x2e y2e x1m y1m x2m y2m", the name of the canvas and the id of the line segment followed by the coordinates of its start and end point in the two possible axis ranges; the coordinates of the midpoint are only filled for logarithmic axes.

The current version of tkcanvas supports neither multiplot nor replot.

47.69 Tpic

The **tpic** terminal driver supports the LaTeX picture environment with tpic \specials. It is an alternative to the **latex** and **eepic** terminal drivers. Options are the point size, line width, and dot-dash interval. Syntax:

```
set terminal tpic <pointsize> <linewidth> <interval>
```

where **pointsize** and **linewidth** are integers in milli-inches and **interval** is a float in inches. If a non-positive value is specified, the default is chosen: pointsize = 40, linewidth = 6, interval = 0.1.

All drivers for LaTeX offer a special way of controlling text positioning: If any text string begins with '{', you also need to include a '}' at the end of the text, and the whole text will be centered both horizontally and vertically by LaTeX. — If the text string begins with '[', you need to continue it with: a position specification (up to two out of t,b,l,r), ']{', the text itself, and finally, '}'. The text itself may be anything LaTeX can typeset as an LR-box. $\text{vule}{}$ {}'s may help for best positioning.

Examples: About label positioning: Use gnuplot defaults (mostly sensible, but sometimes not really best):

```
set title '\LaTeX\ -- $ \gamma $'
Force centering both horizontally and vertically:
    set label '{\LaTeX\ -- $ \gamma $}' at 0,0

Specify own positioning (top here):
    set xlabel '[t]{\LaTeX\ -- $ \gamma $}'

The other label - account for long ticlabels:
    set ylabel '[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{0pt}}'
```

47.70 Unixpc

The unixpc terminal driver supports AT&T 3b1 and AT&T 7300 Unix PC. It has no options.

47.71 Unixplot

The **unixplot** terminal driver generates output in the Unix "plot" graphics language. It has no options. This terminal cannot be compiled if the GNU version of plot is to be used; in that case, use the **gnugraph** terminal instead.

47.72 Atari ST (via VDI)

The **vdi** terminal is the same as the **atari** terminal, except that it sends output to the screen via the VDI and not into AES-Windows.

The **vdi** terminal has options to set the character size and the screen colors.

Syntax:

```
set terminal vdi {<fontsize>} {<col0> <col1> ... <col15>}
```

The character size must appear if any colors are to be specified. Each of the (up to 16) colors is given as a three-digit hex number, where the digits represent RED, GREEN and BLUE (in that order). The range of 0–15 is scaled to whatever color range the screen actually has. On a normal ST screen, odd and even intensities are the same.

Examples:

Additionally, if an environment variable GNUCOLORS exists, its contents are interpreted as an options string, but an explicit terminal option takes precedence.

47.73 Vgagl

The **vgagl** driver is a fast linux console driver with full mouse and pm3d support. It looks at the environment variable SVGALIB_DEFAULT_MODE for the default mode; if not set, it uses a 256 color mode with the highest available resolution.

Syntax:

The color mode can also be given with the mode option. Both Symbolic names as G1024x768x256 and integers are allowed. The **background** option takes either one or three integers in the range [0, 255]. If only one integers is supplied, it is taken as gray value for the background. If three integers are present, the background gets the corresponding color. The (mutually exclusive) options **interpolate** and **uniform** control if color interpolation is done while drawing triangles (on by default).

To get high resolution modes, you will probably have to modify the configuration file of libvga, usually /etc/vga/libvga.conf. Using the VESA fb is a good choice, but this needs to be compiled in the kernel.

The vgagl driver uses the first *available* vga mode from the following list:

- the driver which was supplied when setting vgagl, e.g. 'set term vgagl G1024x768x256' would first check, if the G1024x768x256 mode is available.
- the environment variable SVGALIB_DEFAULT_MODE
- G1024x768x256
- G800x600x256
- G640x480x256
- G320x200x256
- G1280x1024x256
- G1152x864x256
- G1360x768x256
- G1600x1200x256

47.74 VWS

The **VWS** terminal driver supports the VAX Windowing System. It has no options. It will sense the display type (monochrome, gray scale, or color.) All line styles are plotted as solid lines.

47.75 Vx384

The vx384 terminal driver supports the Vectrix 384 and Tandy color printers. It has no options.

47.76 Windows

Three options may be set in the **windows** terminal driver.

Syntax:

```
set terminal windows {<color>} {"<fontname>"} {<fontsize>}
```

where **<color>** is either **color** or **monochrome**, "**<fontname>**" is the name of a valid Windows font, and **<fontsize>** is the size of the font in points.

Other options may be set with the graph-menu, the initialization file, and **set linestyle**. Note that there is one restriction imposed by the classic Windows GDI interface: modifiable linewidth only works with solid lines, not with dotted or dashed ones.

The Windows version normally terminates immediately as soon as the end of any files given as command line arguments is reached (i.e. in non-interactive mode), unless you specify - as the last command line option. It will also not show the text-window at all, in this mode, only the plot. By giving the optional argument -persist (same as for gnuplot under x11; former Windows-only options /noend or -noend are still accepted as well), will not close gnuplot. Contrary to gnuplot on other operating systems, gnuplot's interactive command line is accessible after the -persist option.

47.76.1 Graph-menu

The **gnuplot graph** window has the following options on a pop-up menu accessed by pressing the right mouse button or selecting **Options** from the system menu:

Bring to Top when checked brings the graph window to the top after every plot.

Color when checked enables color linestyles. When unchecked it forces monochrome linestyles.

Copy to Clipboard copies a bitmap and a Metafile picture.

Background... sets the window background color.

Choose Font... selects the font used in the graphics window.

Line Styles... allows customization of the line colors and styles.

Print... prints the graphics windows using a Windows printer driver and allows selection of the printer and scaling of the output. The output produced by **Print** is not as good as that from **gnuplot**'s own printer drivers.

Update wgnuplot.ini saves the current window locations, window sizes, text window font, text window font size, graph window font, graph window font size, background color and linestyles to the initialization file **WGNUPLOT.INI**.

47.76.2 Printing

In order of preference, graphs may be be printed in the following ways.

- 1. Use the **gnuplot** command **set terminal** to select a printer and **set output** to redirect output to a file
- 2. Select the **Print...** command from the **gnuplot graph** window. An extra command **screendump** does this from the text window.
- 3. If set output "PRN" is used, output will go to a temporary file. When you exit from **gnuplot** or when you change the output with another set output command, a dialog box will appear for you to select a printer port. If you choose OK, the output will be printed on the selected port, passing unmodified through the print manager. It is possible to accidentally (or deliberately) send printer output meant for one printer to an incompatible printer.

47.76.3 Text-menu

The **gnuplot text** window has the following options on a pop-up menu accessed by pressing the right mouse button or selecting **Options** from the system menu:

Copy to Clipboard copies marked text to the clipboard.

Paste copies text from the clipboard as if typed by the user.

Choose Font... selects the font used in the text window.

System Colors when selected makes the text window honor the System Colors set using the Control Panel. When unselected, text is black or blue on a white background.

Update wgnuplot.ini saves the current text window location, text window size, text window font and text window font size to the initialisation file **WGNUPLOT.INI**.

MENU BAR

If the menu file **WGNUPLOT.MNU** is found in the same directory as WGNUPLOT.EXE, then the menu specified in **WGNUPLOT.MNU** will be loaded. Menu commands:

[Menu] starts a new menu with the name on the following line.

[EndMenu] ends the current menu.

- [-] inserts a horizontal menu separator.
- []] inserts a vertical menu separator.

[Button] puts the next macro on a push button instead of a menu.

Macros take two lines with the macro name (menu entry) on the first line and the macro on the second line. Leading spaces are ignored. Macro commands:

[INPUT] — Input string with prompt terminated by [EOS] or {ENTER}

[EOS] — End Of String terminator. Generates no output.

[OPEN] — Get name of file to open from list box, with title of list box terminated by [EOS], followed by default filename terminated by [EOS] or {ENTER}. This uses COMMDLG.DLL from Windows 3.1.

[SAVE] — Get name of file to save. Similar to [OPEN]

Macro character substitutions:

```
{ENTER} — Carriage Return '\r' 
{TAB} — Tab '\011' 
{ESC} — Escape '\033' 
{^A} — '\001' 
... 
{^_} — '\031'
```

Macros are limited to 256 characters after expansion.

47.76.4 Wgnuplot.ini

Windows **gnuplot** will read some of its options from the [WGNUPLOT] section of WGNU-PLOT.INI in the Windows directory. A sample WGNUPLOT.INI file:

```
[WGNUPLOT]
TextOrigin=0 0
TextSize=640 150
TextFont=Terminal,9
GraphOrigin=0 150
GraphSize=640 330
GraphFont=Arial,10
GraphColor=1
GraphToTop=1
GraphBackground=255 255 255
Border=0 0 0 0 0
Axis=192 192 192 2 2
Line1=0 0 255 0 0
Line2=0 255 0 0 1
Line3=255 0 0 0 2
Line4=255 0 255 0 3
Line5=0 0 128 0 4
```

The **GraphFont** entry specifies the font name and size in points. The five numbers given in the **Border**, **Axis** and **Line** entries are the **Red** intensity (0–255), **Green** intensity, **Blue** intensity, **Color Linestyle**

and **Mono Linestyle**. **Linestyles** are 0=SOLID, 1=DASH, 2=DOT, 3=DASHDOT, 4=DASHDOT-DOT. In the sample **WGNUPLOT.INI** file above, Line 2 is a green solid line in color mode, or a dashed line in monochrome mode. The default line width is 1 pixel. If **Linestyle** is negative, it specifies the width of a SOLID line in pixels. Line1 and any linestyle used with the **points** style must be SOLID with unit width.

47.76.5 Windows3.0

Windows 3.1 is preferred, but WGNUPLOT will run under Windows 3.0 with the following restrictions: **1.** COMMDLG.DLL and SHELL.DLL (available with Windows 3.1 or Borland C++ 3.1) must be in the windows directory.

- **2.** WGNUPLOT.HLP produced by Borland C++3.1 is in Windows 3.1 format. You need to use the WINHELP.EXE supplied with Borland C++3.1.
- 3. It will not run in real mode due to lack of memory.
- 4. TrueType fonts are not available in the graph window.
- 5. Drag-drop does not work.

47.77 X11

gnuplot provides the x11 terminal type for use with X servers. This terminal type is set automatically at startup if the **DISPLAY** environment variable is set, if the **TERM** environment variable is set to **xterm**, or if the **-display** command line option is used.

Syntax:

Multiple plot windows are supported: **set terminal x11** <**n**> directs the output to plot window number n. If n>0, the terminal number will be appended to the window title (unless a title has been supplied manually) and the icon will be labeled **gplt** <**n**>. The active window may be distinguished by a change in cursor (from default to crosshair.)

The x11 terminal support enhanced text mode (see **enhanced (p. 163)**), subject to the available fonts. In order for font size commands embedded in text to have any effect, the default x11 font must be scalable. Thus the first example below will work as expected, but the second will not.

```
set term x11 enhanced font "arial,15"
set title '{\=20 Big} Medium {\=5 Small}'
set term x11 enhanced font "terminal-14"
set title '{\=20 Big} Medium {\=5 Small}'
```

Plot windows remain open even when the **gnuplot** driver is changed to a different device. A plot window can be closed by pressing the letter q while that window has input focus, or by choosing **close** from a window manager menu. All plot windows can be closed by specifying **reset**, which actually terminates the subprocess which maintains the windows (unless **-persist** was specified). The **close** command can be used to close individual plot windows by number. However, after a **reset**, those plot windows left due to persist cannot be closed with the command **close**. A **close** without a number closes the current active plot window.

The gnuplot outboard driver, gnuplot_x11, is searched in a default place chosen when the program is compiled. You can override that by defining the environment variable GNUPLOT_DRIVER_DIR to point to a different location.

Plot windows will automatically be closed at the end of the session unless the **-persist** option was given.

The options **persist** and **raise** are unset by default, which means that the defaults (persist == no and raise == yes) or the command line options -persist / -raise or the Xresources are taken. If [no]persist

or [no]raise are specified, they will override command line options and Xresources. Setting one of these options takes place immediately, so the behaviour of an already running driver can be modified.

The option **title** "<**title name**>" will supply the title name of the window for the current plot window or plot window <n> if a number is given. Where (or if) this title is shown depends on your X window manager.

The size or aspect ratio of a plot may be changed by resizing the **gnuplot** window.

Linewidths and pointsizes may be changed from within **gnuplot** with **set linestyle**.

For terminal type $\mathbf{x}11$, gnuplot accepts (when initialized) the standard X Toolkit options and resources such as geometry, font, and name from the command line arguments or a configuration file. See the X(1) man page (or its equivalent) for a description of such options.

A number of other **gnuplot** options are available for the **x11** terminal. These may be specified either as command-line options when **gnuplot** is invoked or as resources in the configuration file ".Xdefaults". They are set upon initialization and cannot be altered during a **gnuplot** session. (except **persist** and **raise**)

47.77.1 X11_fonts

Upon initial startup, the default font is taken from the X11 resources as set in the system or user .Xdefaults file or on the command line.

Example:

```
gnuplot*font: lucidasans-bold-12
```

A new default font may be specified to the x11 driver from inside gnuplot using

```
'set term x11 font "<fontspec>"'
```

The driver first queries the X-server for a font of the exact name given, for example **set term x11 font** "lucidasans-10". If this query fails, then it tries to interpret <fontspec> as ",<size>,<slant>,<weight>" and to construct a full X11 font name of the form

```
-*-<font>-<s>-*-<size>-*-*-*-<encoding>

<font> is the base name of the font (e.g. Times or Symbol)

<size> is the point size (defaults to 12 if not specified)

<s> is 'i' if <slant>=="italic" 'o' if <slant>=="oblique" 'r' otherwise

<weight> is 'medium' or 'bold' if explicitly requested, otherwise '*'

<encoding> is set based on the current character set (see help for 'set encoding').
```

So **set term x11 font "arial,15,italic"** will be translated to -*-arial-*-i-*--*-15-*-*-*-*-iso8859-1 (assuming default encoding). The <size>, <slant>, and <weight> specifications are all optional. If you do not specify <slant> or <weight> then you will get whatever font variant the font server offers first. The driver also recognizes some common PostScript font names and replaces them with possible X11 or TrueType equivalents. This same sequence is used to process font requests from **set label**.

If your gnuplot was built with configuration option —enable-x11-mbfonts, you can specify multi-byte fonts by using the prefix "mbfont:" on the font name. An additional font may be given, separated by a semicolon. Since multi-byte font encodings are interpreted according to the locale setting, you must make sure that the environmental variable LC_CTYPE is set to some appropriate locale value such as ja_JP.eucJP, ko_KR.EUC, or zh_CN.EUC.

Example:

The same syntax applies to the default font in Xresources settings, for example,

```
gnuplot*font: \
    mbfont:-misc-fixed-medium-r-normal--14-*-*-c-*-jisx0208.1983-0
```

If gnuplot is built with —enable-x11-mbfonts, you can use two special PostScript font names 'Ryumin-Light-*' and 'GothicBBB-Medium-*' (standard Japanese PS fonts) without the prefix "mbfont:".

47.77.2 Command-line_options

In addition to the X Toolkit options, the following options may be specified on the command line when starting **gnuplot** or as resources in your ".Xdefaults" file (note that **raise** and **persist** can be overridden later by **set term x11** [no]raise [no]persist):

'-mono'	forces monochrome rendering on color displays.	
'-gray'	requests grayscale rendering on grayscale or color displays.	
	(Grayscale displays receive monochrome rendering by default.)	
'-clear'	requests that the window be cleared momentarily before a	
	new plot is displayed.	
'-tvtwm'	requests that geometry specifications for position of the	
	window be made relative to the currently displayed portion	
	of the virtual root.	
'-raise'	raises plot window after each plot.	
'-noraise'	does not raise plot window after each plot.	
'-noevents'	does not process mouse and key events.	
'-persist'	plot windows survive after main gnuplot program exits.	

The options are shown above in their command-line syntax. When entered as resources in ".Xdefaults", they require a different syntax.

Example:

gnuplot*gray: on
gnuplot*ctrlq: on

gnuplot also provides a command line option (**-pointsize** $\langle \mathbf{v} \rangle$) and a resource, **gnuplot*pointsize**: $\langle \mathbf{v} \rangle$, to control the size of points plotted with the **points** plotting style. The value \mathbf{v} is a real number (greater than 0 and less than or equal to ten) used as a scaling factor for point sizes. For example, **-pointsize 2** uses points twice the default size, and **-pointsize 0.5** uses points half the normal size.

The **-noevents** switch disables all mouse and key event processing (except for \mathbf{q} and $\langle \mathbf{space} \rangle$ for closing the window). This is useful for programs which use the x11 driver independent of the gnuplot main program.

The **-ctrlq** switch changes the hot-key that closes a plot window from **q** to **<ctrl>q**. This is useful is you are using the keystroke-capture feature **pause mouse keystroke**, since it allows the character **q** to be captured just as all other alphanumeric characters. The **-ctrlq** switch similarly replaces the **<**space> hot-key with **<**ctrl>**<**space> for the same reason.

47.77.3 Monochrome_options

For monochrome displays, **gnuplot** does not honor foreground or background colors. The default is black-on-white. **-rv** or **gnuplot*reverseVideo:** on requests white-on-black.

47.77.4 Color_resources

For color displays, **gnuplot** honors the following resources (shown here with their default values) or the greyscale resources. The values may be color names as listed in the X11 rgb.txt file on your system, hexadecimal RGB color specifications (see X11 documentation), or a color name followed by a comma and an **intensity** value from 0 to 1. For example, **blue**, **0.5** means a half intensity blue.

gnuplot*background: white gnuplot*textColor: black gnuplot*borderColor: black gnuplot*axisColor: black gnuplot*line1Color: red gnuplot*line2Color: green gnuplot*line3Color: blue gnuplot*line4Color: magenta gnuplot*line5Color: cyan gnuplot*line6Color: sienna gnuplot*line7Color: orange gnuplot*line8Color: coral

The command-line syntax for these is simple only for background, which maps directly to the usual X11 toolkit option "-bg". All others can only be set on the command line by use of the generic "-xrm" resource override option

Examples:

```
gnuplot -background coral
to change the background color.
    gnuplot -xrm 'gnuplot*line1Color:blue'
to override the first linetype color.
```

47.77.5 Grayscale_resources

When **-gray** is selected, **gnuplot** honors the following resources for grayscale or color displays (shown here with their default values). Note that the default background is black.

```
gnuplot*background: black
gnuplot*textGray: white
gnuplot*borderGray: gray50
gnuplot*axisGray: gray50
gnuplot*line1Gray: gray100
gnuplot*line2Gray: gray60
gnuplot*line3Gray: gray80
gnuplot*line4Gray: gray40
gnuplot*line5Gray: gray90
gnuplot*line6Gray: gray50
gnuplot*line7Gray: gray70
gnuplot*line8Gray: gray30
```

47.77.6 Line_resources

gnuplot honors the following resources for setting the width (in pixels) of plot lines (shown here with their default values.) 0 or 1 means a minimal width line of 1 pixel width. A value of 2 or 3 may improve the appearance of some plots.

```
gnuplot*borderWidth: 2
gnuplot*axisWidth: 0
gnuplot*line1Width: 0
gnuplot*line2Width: 0
gnuplot*line3Width: 0
gnuplot*line4Width: 0
gnuplot*line5Width: 0
gnuplot*line6Width: 0
gnuplot*line7Width: 0
gnuplot*line8Width: 0
```

gnuplot honors the following resources for setting the dash style used for plotting lines. 0 means a solid line. A two-digit number jk (j and k are >= 1 and <= 9) means a dashed line with a repeated pattern of j pixels on followed by k pixels off. For example, '16' is a "dotted" line with one pixel on followed by six pixels off. More elaborate on/off patterns can be specified with a four-digit value. For example, '4441' is four on, four off, four on, one off. The default values shown below are for monochrome displays or monochrome rendering on color or grayscale displays. For color displays, the default for each is 0 (solid line) except for **axisDashes** which defaults to a '16' dotted line.

gnuplot*borderDashes: 0 gnuplot*axisDashes: 16 gnuplot*line1Dashes: 0 gnuplot*line2Dashes: 42 gnuplot*line3Dashes: 13 gnuplot*line4Dashes: 44 gnuplot*line5Dashes: 15 gnuplot*line6Dashes: 4441 gnuplot*line7Dashes: 42 gnuplot*line8Dashes: 13

47.77.7 X11 pm3d_resources

Choosing the appropriate visual class and number of colors is a crucial point in X11 applications and a bit awkward, since X11 supports six visual types in different depths.

By default **gnuplot** uses the default visual of the screen. The number of colors which can be allocated depends on the visual class chosen. On a visual class with a depth > 12bit, gnuplot starts with a maximal number of 0x200 colors. On a visual class with a depth > 8bit (but <= 12 bit) the maximal number of colors is 0x100, on <= 8bit displays the maximum number of colors is 240 (16 are left for line colors).

Gnuplot first starts to allocate the maximal number of colors as stated above. If this fails, the number of colors is reduced by the factor 2 until gnuplot gets all colors which are requested. If dividing **maxcolors** by 2 repeatedly results in a number which is smaller than **mincolors gnuplot** tries to install a private colormap. In this case the window manager is responsible for swapping colormaps when the pointer is moved in and out the x11 driver's window.

The default for **mincolors** is maxcolors / (num_colormaps > 1 ? 2 : 8), where num_colormaps is the number of colormaps which are currently used by gnuplot (usually 1, if only one x11 window is open).

Some systems support multiple (different) visual classes together on one screen. On these systems it might be necessary to force gnuplot to use a specific visual class, e.g. the default visual might be 8bit PseudoColor but the screen would also support 24bit TrueColor which would be the preferred choice.

The information about an Xserver's capabilities can be obtained with the program **xdpyinfo**. For the visual names below you can choose one of StaticGray, GrayScale, StaticColor, PseudoColor, TrueColor, DirectColor. If an Xserver supports a requested visual type at different depths, **gnuplot** chooses the visual class with the highest depth (deepest). If the requested visual class matches the default visual and multiple classes of this type are supported, the default visual is preferred.

Example: on an 8bit PseudoColor visual you can force a private color map by specifying **gnuplot*maxcolors: 240** and **gnuplot*mincolors: 240**.

gnuplot*maxcolors: integer gnuplot*mincolors: integer gnuplot*visual: visual name

47.77.8 X11 other_resources

By default the contents of the current plot window are exported to the X11 clipboard in response to X events in the window. Setting the resource 'gnuplot*exportselection' to 'off' or 'false' will disable this.

gnuplot*exportselection: off gnuplot*ctrlq: off

47.78 Xlib

The **xlib** terminal driver supports the X11 Windows System. It generates gnuplot_x11 commands, but sends them to the output file specified by **set output** '<**filename**>'. **set term x11** is equivalent to **set terminal xlib**; **set output** "|**gnuplot_x11 -noevents**". **xlib** takes the same set of options as **x11**.

Part IV

Graphical User Interfaces

Several graphical user interfaces have been written for **gnuplot** and one for win32 is included in this distribution. In addition, there is a Macintosh interface at

```
ftp://ftp.ee.gatech.edu/pub/mac/gnuplot
```

Also several X11 interfaces exist. One of them is called xgfe. It uses the Qt library and can be found on

```
http://www.flash.net/~dmishee/xgfe/xgfe.html
```

In addition three Tcl/Tk located at the usual Tcl/Tk repositories exist.

Bruce Ravel (ravel@phys.washington.edu) has written a new version of gnuplot-mode for GNU emacs and XEmacs. This version is based on the gnuplot.el file by Gershon Elber. While the gnuplot CVS repository has its own copy the most recent version of this package is available from

http://feff.phys.washington.edu/~ ravel/software/gnuplot-mode/

Part V

Bugs

Floating point exceptions (floating point number too large/small, divide by zero, etc.) may occasionally be generated by user defined functions. Some of the demos in particular may cause numbers to exceed the floating point range. Whether the system ignores such exceptions (in which case **gnuplot** labels the corresponding point as undefined) or aborts **gnuplot** depends on the compiler/runtime environment.

The bessel functions do not work for complex arguments.

The gamma function does not work for complex arguments.

As of **gnuplot** version 3.7, all development has been done using ANSI C. With current operating system, compiler, and library releases, the OS specific bugs documented in release 3.5, now relegated to **old_bugs**, may no longer be relevant.

Bugs reported since the current release as well as older ones may be located via the official distribution site:

```
http://www.gnuplot.info
```

Please e-mail any bugs to bug-gnuplot mailing list (see Seeking-assistance (p. 15)).

48 Old_bugs

There is a bug in the stdio library for old Sun operating systems (SunOS Sys4-3.2). The "%g" format for 'printf' sometimes incorrectly prints numbers (e.g., 200000.0 as "2"). Thus, tic mark labels may be

incorrect on a Sun4 version of **gnuplot**. A work-around is to rescale the data or use the **set format** command to change the tic mark format to "%7.0f" or some other appropriate format. This appears to have been fixed in SunOS 4.0.

Another bug: On a Sun3 under SunOS 4.0, and on Sun4's under Sys4-3.2 and SunOS 4.0, the 'sscanf' routine incorrectly parses "00 12" with the format "%f %f" and reads 0 and 0 instead of 0 and 12. This affects data input. If the data file contains x coordinates that are zero but are specified like '00', '000', etc, then you will read the wrong y values. Check any data files or upgrade the SunOS. It appears to have been fixed in SunOS 4.1.1.

Suns appear to overflow when calculating $\exp(-x)$ for large x, so **gnuplot** gets an undefined result. One work-around is to make a user-defined function like e(x) = x < -500? 0: $\exp(x)$. This affects plots of Gaussians $(\exp(-x^*x))$ in particular, since x^*x grows quite rapidly.

Microsoft C 5.1 has a nasty bug associated with the %g format for 'printf'. When any of the formats "%.2g", "%.1g", "%.0g", "%.g" are used, 'printf' will incorrectly print numbers in the range 1e-4 to 1e-1. Numbers that should be printed in the %e format are incorrectly printed in the %f format, with the wrong number of zeros after the decimal point. To work around this problem, use the %e or %f formats explicitly.

gnuplot, when compiled with Microsoft C, did not work correctly on two VGA displays that were tested. The CGA, EGA and VGA drivers should probably be rewritten to use the Microsoft C graphics library. **gnuplot** compiled with Borland C++ uses the Turbo C graphics drivers and does work correctly with VGA displays.

VAX/VMS 4.7 C compiler release 2.4 also has a poorly implemented %g format for 'printf'. The numbers are printed numerically correct, but may not be in the requested format. The K&R second edition says that for the %g format, %e is used if the exponent is less than -4 or greater than or equal to the precision. The VAX uses %e format if the exponent is less than -1. The VAX appears to take no notice of the precision when deciding whether to use %e or %f for numbers less than 1. To work around this problem, use the %e or %f formats explicitly. From the VAX C 2.4 release notes: e,E,f,F,g,G Result will always contain a decimal point. For g and G, trailing zeros will not be removed from the result.

VAX/VMS 5.2 C compiler release 3.0 has a slightly better implemented %g format than release 2.4, but not much. Trailing decimal points are now removed, but trailing zeros are still not removed from %g numbers in exponential format.

The two preceding problems are actually in the libraries rather than in the compilers. Thus the problems will occur whether **gnuplot** is built using either the DEC compiler or some other one (e.g. the latest gcc).

ULTRIX X11R3 has a bug that causes the X11 driver to display "every other" graph. The bug seems to be fixed in DEC's release of X11R4 so newer releases of ULTRIX don't seem to have the problem. Solutions for older sites include upgrading the X11 libraries (from DEC or direct from MIT) or defining ULTRIX_KLUDGE when compiling the x11.trm file. Note that the kludge is not an ideal fix, however.

The constant HUGE was incorrectly defined in the NeXT OS 2.0 operating system. HUGE should be set to 1e38 in plot.h. This error has been corrected in the 2.1 version of NeXT OS.

Some older models of HP plotters do not have a page eject command 'PG'. The current HPGL driver uses this command in HPGL reset. This may need to be removed for these plotters. The current PCL5 driver uses HPGL/2 for text as well as graphics. This should be modified to use scalable PCL fonts.

On the Atari version, it is not possible to send output directly to the printer (using /dev/lp as output file), since CRs are added to LFs in binary output. As a work-around, write the output to a file and copy it to the printer afterwards using a shell command.

On AIX 4, the literal 'NaNq' in a datafile causes the special internal value 'not-a-number' to be stored, rather than setting an internal 'undefined' flag. A workaround is to use **set datafile missing 'NaNq'**.