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Abstract The stability of hypothetical Trojan planets in exoplanetary systems is investi-
gated. In the model of the planar three-body problem, corresponding to a gravi-
tational system of a star, a giant planet and a Trojan planet, the stability regions
for the Trojan planet around the Lagrangian point L4 are determined depending
on themassof thetwo planetsand the initial eccentricity of theorbit of thegiant
planet. Theresults indicate that in exoplanetary systemswith onegiant planet of
several Jupiter-masses, aTrojan planet up to oneJupiter-masscan exist in stable
motion around L4.
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1. Introduction

The possible existence and stability of Trojan planets in exoplanetary sys-
tems have been the subject of several recent discussions. It is well known
that Trojan asteroids exist in the Solar System in great number. It can be ex-
pected that Trojan-type objects exist also in exoplanetary systems. Laughlin
and Chambers [3] outlined a possible formation mechanism of Trojan plan-
ets in protoplanetary accretion discs. They also discussed the question of de-
tectability of extrasolar Trojan planets. According to their results two planets
with masses comparable to the mass of Jupiter or Saturn around a solar-mass
star can perform stable tadpole-type librations about the Lagrangian pointsL4

or L5 of the system. Pairs of Saturn-mass planets can also execute horseshoe
orbits around a solar-mass star, but this is not possible for Jupiter-mass pairs.
A pair of planets both in tadpole and horseshoe-type orbits induce a charac-
teristic pattern in the radial velocity component of the central star that could
be detected. Nauenberg [5] determined numerically the nonlinear stability do-
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main of the triangular Lagrangian solutions in the general three-body problem
as a function of the eccentricity of the orbits and the Routh’s mass parame-
ter. This study indicates that there is a wide range of Jupiter-size planetary
masses (including brown dwarfs) and eccentricities for which such solutions
could exist in exoplanetary systems.

Most of the known exoplanets are gaseos giant planets having large masses
of the order of or several Jupiter-masses. The search for small terrestrial-like
planets with solid surface is an outstanding aim of several ongoing and future
research projects. It is an important question, whether Earth-like planets can
exist in the habitable zone (HZ) of exoplanetary systems. If there is a giant
planet in the HZ of a system, the existence of another planet there is unlikely.
However, as Menou and Tabachnik [6] noted, terrestrial planets could exist at
the stable Lagrangian pointsL4 or L5 of the giant planet moving in the HZ.

Érdi and Sándor [2] studied this possibility in detail, investigating five ex-
oplanetary systems (HD 17051, HD 28185, HD 108874, HD 27442, and
HD 114783) in which the only known giant planet moves in the HZ. By using
themodel of theelliptic restricted three-body problem they determined numer-
ically theregion aroundL4 of each system wherestable tadpole-type motion is
possible. In [2] four other systems (HD 150706, HD 177830, HD 20367, and
HD 23079) werealso studied in which theorbit of thegiant planet ispartly out-
side the HZ due to its large eccentricity. It has been shown that in all studied
systems there is an extended stability region around L4, whose extent depend
on the mass and the orbital eccentricity of the giant planet. It is possible that
Trojan exoplanets of negligible massexist in these systems.

Dvorak et al. [1] also studied three exoplanetary systems in which a giant
planet moves close to the HZ in low eccentricity orbit. They determined the
size and the structure of the stability region around L4 andL5 and pointed out
that the stability region shrinks significantly with the increase of the orbital
eccentricity of the giant planet. It is possible that in all three systems a small
Trojan planet could exist in stable orbits with moderate eccentricities.

In our previousstudy [2] weassumed that thefictitiousTrojan exoplanet had
negligible mass. In this paper we study the problem more generally, giving
mass to the Trojan planet up to 1 Jupiter-mass and determine the regions of
stability around L4 in the model of theplanar three-body problem.

2. Dynamical model and method of investigation

For the investigation of the nonlinear stability of orbits around L4 we used
the model of the planar three-body problem, corresponding to a gravitational
system of astar, agiant planet and aTrojan planet, by assuming, asafirst step
of a more general stability study, that the orbits of the two planets are in the
same plane.
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To determine the dynamical character of the orbits we used the method of
therelativeLyapunov indicators (RLI) developed by Sándor et al. [7], [8]. The
RLI measures the difference in the convergence of the finite-time Lyapunov
indicators to the maximal Lyapunov characteristic exponents of two initially
very close orbits. The values of the RLI are characteristically several orders
of magnitude larger for orbits in a chaotic region than in a regular domain.
The method is extremely fast in establishing the ordered or chaotic nature of
individual orbits, and therefore isvery well applicable to explorethedynamical
structure of thephasespace. According to our experiments, gained in different
dynamical problems, it isenough to integratethetwovery closeorbits for afew
hundred timesof thelongest orbital period of thestudied system. In thepresent
investigation we integrated the orbits for 103 periods of thegiant planet.

In our computations we used the following parameters and initial orbital
elements.

Mass of the central star: m0 = 1 m� (solar mass)

Mass of the giant planet: m′ = 1, 2, 3, 4, 5, 6, 7mJ (Jupiter-mass)

Initial orbital elements of the giant planet:

– semi-major axis: a′ = 1 AU

– eccentricity: e′ = 0 − 0.30, stepsize: ∆e′ = 0.05

– argument of the pericentre: ω = 0

– mean anomaly: M ′ = 0

Massof theTrojan planet: m = 0, 1, 2, 3, 10, 100 mE (Earth-mass) and
1mJ

Initial orbital elements of the Trojan planet:

– semi-major axis: a = 0.8 − 1.2 AU, stepsize: ∆a = 0.001 AU

– eccentricity: e = 0

– synodic longitude: λ− λ′ = 20◦ − 180◦, stepsize: ∆λ = 2◦,

where λ and λ′ are the mean orbital longitudes of the Trojan and the giant
planet, respectively. (Initially λ′ = 0, sinceλ′ = M ′ + ω ′.)

We computed maps of dynamical stability around L4 in the following way.
Selecting a value of m′, e′ and m from the given sets, we changed the semi-
major axisand thesynodic longitude of theTrojan planet in thegiven intervals
with the given stepsize and computed the values of the RLI for all resulting
orbits. Then werepresented the logarithm of thevaluesof theRLI correspond-
ing to each initial point on the (a, λ− λ′) plane on a black and white scale. In
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what follows we discuss the main characteristics of these maps. Some repre-
sentatives of them are shown in Figures 1-8. Low RLI values (light regions)
correspond to stable orbits, high RLI values (dark shades) indicate chaotic be-
haviour. The black background corresponds to escape or collision orbits with
the giant planet. Considering that 7 values for the mass of both planets, and
also 7 values for the initial orbital eccentricity of the giant planet were taken,
altogether 343 maps were computed. These dynamical stability maps can be
used to establish thestability region aroundL4 in known exoplanetary systems
with one giant planet.

3. Maps of dynamical stability

Fig. 1 shows the stability region around L4 for m = 0, m′ = 1mJ , e′ = 0
(circular restricted three-body problem, with mass parameter µ = m′/(m0 +
m′) ≈ 0.001). It can beseen that thereisacentral morestableregion and going
outwards a ring structure appears corresponding to higher order resonances
between theshort and long period componentsof thelibrational motion around
L4.

Figure 1. Structure of the stability region around L4 in the circular restricted three-body
problem (m = 0, e′ = 0) for the mass parameter µ ≈ 0.001 (m′ = 1mJ ).

The computations show that increasing the mass of the giant planet, the sta-
bility region becomes shorter in the synodic longitude and wider in the semi-
major axis. Near its edge the ring structure disrupts into a chain of islands. In
Fig. 2, obtained for m′ = 2mJ , both a ring and achain of small islands can be
seen. These islands are remnants of a former ring. Theshrinking of the stabil-
ity region with the increase of the massof the giant planet isnot monotonic, it
reaches aminimum extension at m′ = 6mJ (Fig. 3), then it is larger again for
m′ = 7mJ (not shown in the figures).

In the elliptic restricted three-body problem, when m = 0 and e′ 6= 0, the
structure of thestability regions issimilar to that of thecircular problem. Figs.
4 and 5 show two examples which are somewhat different from the general
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Figure 2. Structure of the stability region around L4 in the circular restricted three-body
problem (m = 0, e′ = 0) for µ ≈ 0.002 (m′ = 2mJ ).

Figure 3. Structure of the stability region around L4 in the circular restricted three-body
problem (m = 0, e′ = 0) for µ ≈ 0.006 (m′ = 6mJ ).

picture. Fig. 4, obtained for e′ = 0.1, m′ = 4mJ , exhibits a well structured
stability region around L4. In Fig. 5, obtained for e′ = 0.2, m′ = 3mJ , a
compact stability region ispresent.

Figure 4. Structure of the stability region around L4 in the elliptic restricted three-body
problem for e′ = 0.1, µ ≈ 0.004 (m = 0, m′ = 4mJ ).
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Figure 5. Structure of the stability region around L4 in the elliptic restricted three-body
problem for e′ = 0.2, µ ≈ 0.003 (m = 0, m′ = 3mJ ).

When the Trojan planet has non-zero mass, the stability region is still quite
extended. Figs. 6 and 7 show the cases when m = 1mE and 10mE (in both
cases e′ = 0, m′ = 1mJ ). A comparison with Fig. 1 (m = 0, e′ = 0)
reveals that the size of the stability region isabout the same for Trojan planets
of several Earth-masses as for negligible mass.

Figure 6. Structure of the stability region around L4 in the three-body problem for m =
1mE , e′ = 0, m′ = 1mJ .

We determined the stability regions around L4 in the planar three-body
problem for the combinations of the masses: m = 1, 2, 3, 10, 100mE , and
1MJ , m′ = 1, 2, 3, 4, 5, 6, 7mJ , and initial eccenticity of the giant planet
e′ = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. For agiven pair of m′ and e′ thesize of
thestability region doesnot changemuch with the increaseof m. Thechanges
arelarger whenm isfixed, and eitherm′ or e′ ischanged whiletheother iskept
constant. The computations confirm the existence of a stability region around
L4 even for m = mJ , when the mass of the giant planet is several Jupiter-
masses and its orbit is very eccentric. Fig. 8 shows the stability region for
m = 1mJ , e′ = 0.3, andm′ = 1mJ . Increasing m′ at this value of m and e′,
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Figure 7. Structure of the stability region around L4 in the three-body problem for m =
10mE , e′ = 0, m′ = 1mJ .

the size of the stability region decreases reaching its minimum at m′ = 5mJ ,
after which it grows again, as the computations show.

Figure8. Structureof thestability region around L4 in thethree-body problem for m = 1mJ ,
e′ = 0.3, m′ = 1mJ .

4. Sizeof thestability region

The size of the stability region depends on the massesm,m′ and the eccen-
tricity e′. In [2] we determined this dependence for m = 0. Continuing that
work westudied how thesize of thestability region depends also onm. Fig. 9
shows the dependence of the size of the stability region around L4 onm′ and
e′ for m = 1mJ for 500 periods of the primaries. The figure was obtained as
follows.

For a given pair of e′ and µ = m′/(m0 + m′) we put the Trojan planet
in the point L4 with zero relative initial velocity and checked if it stays there
or performs librational motion around L4 for 500 periods of the primaries.
(Certainly, the time interval in this kind of investigations is crucial, we took
this value as a compromise. The general features of the stability structure
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appear during this time.) Then we moved the Trojan planet a little away from
L4 along a line going throgh L4 perpendicular to the line of the primaries. We
checked again the librational motion of the Trojan planet. Proceeding in this
way we determined the largest distance ε from L4 (perpendicular to the line
of the primaries) at which the Trojan planet starting with zero relative initial
velocity still performs librational motion aroundL4 and doesnot cross the line
of theprimaries. Wedefined thestability region asthelargest possible libration
region. Changing e′ and µ on afinegrid, wedetermined for each pair of (e′, µ)
the largest ε (in the unit of the distance of the primaries) corresponding to
the largest libration region. For the sake of better visualization Fig. 9 shows
the values of 1/ log(ε) instead of ε on a black and white scale. The light
region abovetheV-shaped curvecorresponds to instability, libration ispossible
below this curve. Darker regions correspond to larger librational regions. It
can be seen that the size distribution of the stability regions shows a complex
structure. The size is the largest when both e′ and µ are small (e′ < 0.1,
µ < 0.01). Thismeans that in an exoplanetary system with onegiant planet of
several Jupiter-masses there can be a Trojan planet of one Jupiter-mass. The
fine structure of the figure confirms our previous finding that the size of the
stability region changes much either fixing e′ and varying µ, or vice versa.
There is also an extended stability region for small values of e′ (e′ < 0.1)
between µ = 0.014 − 0.02. This was also found by Lohinger and Dvorak [4].
The unstable regions below µ = 0.014 and at µ = 0.023 correspond to the
resonances 3:1 and 2:1 between the frequencies of libration around L4. The
finger-like structure on the left sideof thefiguremay berelated to higher order
resonances.

Figure 9. Size of the stability region around L4 in the planar three-body problem for a
Trojan planet of mass m = 1mJ depending on the ecccentricity e′ and mass parameter µ =
m′/(m0 + m′) of the giant planet.
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