Adaptive Lie-integration

5th Austrian-Hungarian Workshop
on Trojans and Related Topics

9 — 10 April, 2010



Ordinary differential equations

Problem: let’s solve the equation

T = fi(x) (1)

where x : R — RY (x = (21,...,7y)). Note: all non-autonomous
equation can be transformed into such a form by introducing a
new variable. Numerical methods for solving such equations:

e classic explicit methods (e.g. RKn, MMID, BS);

e symplectic mappings (for special /Hamiltonian/ problems, e.g. Leap-
Frog);

e implicit methods (e.g. modified Euler);

e Lie-integration: the power series expansion of the solution is computed
and the coefficients are then summed appropriately.



Adatptive integration methods

Basic problem: the numerical solution is performed with a given
stepsize, however, it is not obvious what is the “optimal”’ stepsize
in order to obtain a certain (relative or absolute) precision:

e analytic estimations for this optimal stepsize; or

e direct variations (until the desired precision is obtained).

With the exception of the Euler method, all of the explicit meth-
ods must compute the right-hand side of the ODE in instances
that depend on the stepsize = if it turns out to be too small or
too large, stepsize variation yields CPU time loss.



Lie-integration

Formally, the solution of the differential equation
x = f(x) (2)
(where f : RY — R”") can be written as

x(t + At) = exp(AtL)x(t), (3)

where L = Zsz and D; = ;> - (L is the so-called Lie-operator).

The exponentlal function can be expanded as:

AT
exp(AtL) = Z L (4)
k=0

The Lie-integration is the finite approximation of the sum in
equation (4) (see, e.g., Hanslmeier & Dvorak, 1984, A&A).



Properties of the Lie-integration

Advantages:

e yields the coefficients of the Taylor-expansion (of course, these can be
exploited for other purposes as well, example: transit light curve asym-
metries due to an eccentric orbit: M < 3...5);

e the coefficients are computed using recurrence relations: the derivatives
L"*'z; are written as the functions of the derivatives Lfz; (0 < k < n);

e if the coefficients are known = the computation of the sum is extremely
fast, for arbitrary values of At

e all in all: a very fast method

Disadvantages:

e For each problem (differential equation), we need a different set of re-
currence relations that should be derived independently. It is highly not
obvious and such a derivation requires some sort of intuition.

All in all, the Lie-integration is not a widespread method, al-
though it is definitely more effective than the other techniques.



Linearized equations

The original set of ODEs (x : R — RY) and its linearized (¢ : R —

RY):
'j:i = fi(X>7
N

Using the notations introduced earlier:
L=1Lo+ Ly = fiD; + &EnDin 136, )

where D,, = a% and 0, = a% (thus, Ly = f;D; and L, = &, D,, f:0;).
This extension of the original ODE does not modify the formal
solution of equation (3), since Ly{; =0 foralli=1,..., N.



Solving the linearized equations

We can write the solution similarly to the original equations (see
Pal & Siili 2007, MNRAS):

£(t + At) = exp(AtL)E(D). (6)

It has been proven that the derivatives L"¢, = (Lo + L;)"¢, can be
computed in a simpler manner, namely:

Lnfk = mean{IIk = mengl'k (7)

On the right-hand side, there are only functions of the D,, deriva-
tives (in practice, in the form of D,,L{).



Adaptive integration — |.

An example: the Taylor-expansion of a periodic function:

The expansion of the sine function up to the order of 61.

To obtain a certain precision, the integration order is roughly
proportional to the integration stepsize.



Adaptive integration — Il.

Simple algorithm: let us define a minimal and maximal integra-
tion (polynomial) order: M, and M.

1. the integration (i.e. the computation of the coefficients and the summation)
is performed for a given At stepsize.

2. if the desired precision (9) is reached earlier (so, M < My;,), then At is
multiplied by M,,.x/Muin and the sum of the power series is calculated
again (including the computation of the subsequent Lie-derivatives). This
step might have to be repeated until M reaches M,,.

3. If the precision 0 is not obtained before the order A, then At is multiplied
(decreased) by M., /M,.x and the sum is computed (like above, this step
is repeated until convergence).

4. If the given precision is reached between M, ;, and M,,.., we proceed with
the next integration step.

In practice, even the machine precision (§ ~ 2-107!%, for IEEE 64
bit numbers, double types) can be reached without any additional
tricks!



Adaptive integration — IlI.

Some hints:
e Choices for M,,;, and M,,..: make the integration as fast as possible.

e Of course, it depends on the problem, the actual implementation and the
value of §. In practice, M,;, ~ 16 and M., ~ 20 is a good choice for the
N-body problem and for machine precision.

Applications:

e Time series analysis: the model function can be threated as an analytical
function even if it can be derived only as a solution of an ODE;

e For this analysis, one needs: time series and the parametric derivatives
(see, e.g.: linear regression, nonlinear Levenberg-Marquardt fit, error prop-
agation and estimation of the uncertainties using Fisher analysis).



Adaptive integration — IV — the N-body problem

Propertites of a “regular’ planetary system: almost circular
orbits; no orbital intersections and regular motion on shorter
timescales.

How can the adaptive Lie-integration be made more efficient:

e the integration order is not the same for the bodies;

e inner planets: higher orders for a certain stepsize (the orbital curveture
is larger, see the figure about the sine function), outer planets: a smaller
order is adequate;

e “crosstalk” between the coefficients: terms related to the interaction be-
tween the central body and the given planet have to be computed up to
a higher order than the terms related to mutual interactions.

e 1 < N-body systems: although the initialization of the integration requires
O(N?) operation, we might save CPU time during the computation of
the 1 < k Lie-coefficients by employing such an algorithm, thus such an
implementation might be an O(N?) one (where 1 < p < 2).

To be done, under construction, ongoing study, etc ...



Applications

Analytical investigations of ODE solutions: there is a quantity ()
that depends on the solution itself: Q = Q(x(¢)). Problem: what
are the parametric derivatives of () with respect to the initial
conditions (x" = x|;—0)? These are:

50 50

— = Zp—
6(1)2 8xk’

(8)

while Z;. is the solution of the full linearized set of equations:

el — £V

(9)

with the initial conditions of Z|;—g = .

Additionally, the chain rule can be applied if it is neccessary.



Applications — analysis of RV curves

Radial velocity variations caused by multiple planetary compan-
ions:

e N-body problem;
e ordinary differential equations, Lie-series are known;

e parameters: orbital elements and the observed RV amplitude
(chain rule: it is not so simple to apply)

e observed quantity (denoted as () earlier): radial velocity: the
classic solution is the linear combination of each component
(thus, the derivatives 0Q)/0z;, can be computed easily);

Therefore: the previously introduced algorithms and methods
can be applied for RV analysis. In other words, an RV time series
can be treated as simple as any well-known ordinary analytical
function (linear function, trigonometric, etc.)



Applications — HD 73526 — I.

Two planets, nearly 2:1 mean motion resonance.

A simple question: can the orbital inclination be derived
purely from RV data? Parameters:

N x {K,n, Ao, ecosw, esinw} , My, sini.
Small inclination = larger masses (i.e. msini is given) =

stronger perturbations.

The whole RV tiem series is treated and modelled as an an-
alytical function. Important: it is independent from stability
studies!

It is good if the uncertainty of sin: is smaller than 1.

Methods: fit of the orbital elements, RV amplitudes and sin i,
and uncertainty estimations: Monte-Carlo (MCMC). An in-
dependent estimation for the uncertainties: Fisher-analysis.



Applications — HD 73526 — II.

Monte-Carlo (MCMC) distribution for sin i:

Fisher analysis: A(sini) ~ 0.19 = the two methods yield the
roughly the same values!



Implementation — I.

Basic implementation on an UNIX-like system:

e “Normal’ implementation: C code with ~3.5 kloc (including a simple user
interface that parses simple configuration files, some basic chaos detection
algorithms, full implementation of the adaptive integration).

e Number of basic arithmetic operations (addition, subtraction, multiplica-
tion): N?O(M?), number of more complex operations (division, exponen-
tial and power, square root): N2

e Problems related to stability investigations: independent ODEs for each
initial condition — parallel computations.



Implementation — II.

Implementation on a (GP)GPU architecture:

e Can be made very effective:

— no need for complex operations at the most of the time; and
— no interaction between the various initial conditions.
e Memory: although the Lie-integration requires “more” memory than a
normal (RK, BS, ...) integration:
— data still fit into the registers(!) of the GPU;

— additionally, no need for the global (DRAM) memory at all (only for
communicating with the CPU and/or system DRAM); and

— only minimal SRAM (higher level cache) is needed (for global con-
stants /masses, physical constants/ and some initialization values
required by the algorithm; such as pi_j2 and so on).

e Non-trivial issues: computation on different threads yields different inte-
gration times and computing times as well.

To be done, under construction, ongoing study, etc ...



Summary

Lie-integration: very effective, can be applied easily and
without losing (expensive) computation time as an adap-
tive integration scheme, but there is no general form (i.e.
algorithm or implementation).

Linearized equations: derived almost automatically.

Possibilites for analytical investigations if the model function
is a result of an ordinary differential equation.

Applications: RV analysis, uncertainty estimations.

Implementation: normal (CPU) code, GPU code; rather
complex, but. ..



Thank you




