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Ordinary di�erential equationsProblem: let's solve the equation
ẋi = fi(x) (1)where x : R → R

N (x = (x1, . . . , xN)). Note: all non-autonomousequation 
an be transformed into su
h a form by introdu
ing anew variable. Numeri
al methods for solving su
h equations:
• 
lassi
 expli
it methods (e.g. RKn, MMID, BS);
• symple
ti
 mappings (for spe
ial /Hamiltonian/ problems, e.g. Leap-Frog);
• impli
it methods (e.g. modi�ed Euler);
• Lie-integration: the power series expansion of the solution is 
omputedand the 
oe�
ients are then summed appropriately.



Adatptive integration methodsBasi
 problem: the numeri
al solution is performed with a givenstepsize, however, it is not obvious what is the �optimal� stepsizein order to obtain a 
ertain (relative or absolute) pre
ision:
• analyti
 estimations for this optimal stepsize; or
• dire
t variations (until the desired pre
ision is obtained).With the ex
eption of the Euler method, all of the expli
it meth-ods must 
ompute the right-hand side of the ODE in instan
esthat depend on the stepsize ⇒ if it turns out to be too small ortoo large, stepsize variation yields CPU time loss.



Lie-integrationFormally, the solution of the di�erential equation
ẋ = f(x) (2)(where f : R

N → R
N) 
an be written as

x(t + ∆t) = exp(∆tL)x(t), (3)where L =
N∑

i=1

fiDi and Di = ∂
∂xi

(L is the so-
alled Lie-operator).The exponential fun
tion 
an be expanded as:
exp(∆tL) =

∞∑

k=0

∆tk

k!
Lk. (4)The Lie-integration is the �nite approximation of the sum inequation (4) (see, e.g., Hanslmeier & Dvorak, 1984, A&A).



Properties of the Lie-integrationAdvantages:
• yields the 
oe�
ients of the Taylor-expansion (of 
ourse, these 
an beexploited for other purposes as well, example: transit light 
urve asym-metries due to an e

entri
 orbit: M ≤ 3 . . . 5);
• the 
oe�
ients are 
omputed using re
urren
e relations: the derivatives

Ln+1xi are written as the fun
tions of the derivatives Lkxj (0 ≤ k ≤ n);
• if the 
oe�
ients are known ⇒ the 
omputation of the sum is extremelyfast, for arbitrary values of ∆t

• all in all: a very fast methodDisadvantages:
• For ea
h problem (di�erential equation), we need a di�erent set of re-
urren
e relations that should be derived independently. It is highly notobvious and su
h a derivation requires some sort of intuition.All in all, the Lie-integration is not a widespread method, al-though it is de�nitely more e�e
tive than the other te
hniques.



Linearized equationsThe original set of ODEs (x : R → R
N) and its linearized (ξ : R →

R
N):

ẋi = fi(x),

ξ̇i =

N∑

m=1

ξm

∂fi(x)

∂xm

.Using the notations introdu
ed earlier:
L = L0 + Lℓ = fiDi + ξmDmfi∂i, (5)where Dm = ∂

∂xm

and ∂i = ∂
∂ξi

(thus, L0 = fiDi and Lℓ = ξmDmfi∂i).This extension of the original ODE does not modify the formalsolution of equation (3), sin
e L0ξi ≡ 0 for all i = 1, . . . , N .



Solving the linearized equationsWe 
an write the solution similarly to the original equations (seePál & Süli 2007, MNRAS):
ξ(t + ∆t) = exp(∆tL)ξ(t). (6)It has been proven that the derivatives Lnξk = (L0 +Lℓ)

nξk 
an be
omputed in a simpler manner, namely:
Lnξk = ξmDmLnxk = ξmDmLn

0
xk. (7)On the right-hand side, there are only fun
tions of the Dm deriva-tives (in pra
ti
e, in the form of DmLn

0
).



Adaptive integration � I.An example: the Taylor-expansion of a periodi
 fun
tion:
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tion up to the order of 61.To obtain a 
ertain pre
ision, the integration order is roughlyproportional to the integration stepsize.



Adaptive integration � II.Simple algorithm: let us de�ne a minimal and maximal integra-tion (polynomial) order: Mmin and Mmax1. the integration (i.e. the 
omputation of the 
oe�
ients and the summation)is performed for a given ∆t stepsize.2. if the desired pre
ision (δ) is rea
hed earlier (so, M < Mmin), then ∆t ismultiplied by Mmax/Mmin and the sum of the power series is 
al
ulatedagain (in
luding the 
omputation of the subsequent Lie-derivatives). Thisstep might have to be repeated until M rea
hes Mmin.3. If the pre
ision δ is not obtained before the order Mmax, then ∆t is multiplied(de
reased) by Mmin/Mmax and the sum is 
omputed (like above, this stepis repeated until 
onvergen
e).4. If the given pre
ision is rea
hed between Mmin and Mmax, we pro
eed withthe next integration step.In pra
ti
e, even the ma
hine pre
ision (δ ≈ 2 · 10−16, for IEEE 64bit numbers, double types) 
an be rea
hed without any additionaltri
ks!



Adaptive integration � III.Some hints:
• Choi
es for Mmin and Mmax: make the integration as fast as possible.
• Of 
ourse, it depends on the problem, the a
tual implementation and thevalue of δ. In pra
ti
e, Mmin ≈ 16 and Mmax ≈ 20 is a good 
hoi
e for the

N-body problem and for ma
hine pre
ision.Appli
ations:
• Time series analysis: the model fun
tion 
an be threated as an analyti
alfun
tion even if it 
an be derived only as a solution of an ODE;
• For this analysis, one needs: time series and the parametri
 derivatives(see, e.g.: linear regression, nonlinear Levenberg-Marquardt �t, error prop-agation and estimation of the un
ertainties using Fisher analysis).



Adaptive integration � IV � the N-body problemPropertites of a �regular� planetary system: almost 
ir
ularorbits; no orbital interse
tions and regular motion on shortertimes
ales.How 
an the adaptive Lie-integration be made more e�
ient:
• the integration order is not the same for the bodies;
• inner planets: higher orders for a 
ertain stepsize (the orbital 
urvetureis larger, see the �gure about the sine fun
tion), outer planets: a smallerorder is adequate;
• �
rosstalk� between the 
oe�
ients: terms related to the intera
tion be-tween the 
entral body and the given planet have to be 
omputed up toa higher order than the terms related to mutual intera
tions.
• 1 ≪ N-body systems: although the initialization of the integration requires
O(N2) operation, we might save CPU time during the 
omputation ofthe 1 ≤ k Lie-
oe�
ients by employing su
h an algorithm, thus su
h animplementation might be an O(Np) one (where 1 ≤ p < 2).To be done, under 
onstru
tion, ongoing study, et
 . . .



Appli
ationsAnalyti
al investigations of ODE solutions: there is a quantity Qthat depends on the solution itself: Q ≡ Q(x(t)). Problem: whatare the parametri
 derivatives of Q with respe
t to the initial
onditions (x0 ≡ x|t=0)? These are:
∂Q

∂x0

ℓ

= Zℓk

∂Q

∂xk

, (8)while Zℓk is the solution of the full linearized set of equations:
Żℓk = Zℓm

∂fk(x)

∂xm

, (9)with the initial 
onditions of Zℓk|t=0 = δℓk.Additionally, the 
hain rule 
an be applied if it is ne

essary.



Appli
ations � analysis of RV 
urvesRadial velo
ity variations 
aused by multiple planetary 
ompan-ions:
• N-body problem;
• ordinary di�erential equations, Lie-series are known;
• parameters: orbital elements and the observed RV amplitude(
hain rule: it is not so simple to apply)
• observed quantity (denoted as Q earlier): radial velo
ity: the
lassi
 solution is the linear 
ombination of ea
h 
omponent(thus, the derivatives ∂Q/∂xk 
an be 
omputed easily);Therefore: the previously introdu
ed algorithms and methods
an be applied for RV analysis. In other words, an RV time series
an be treated as simple as any well-known ordinary analyti
alfun
tion (linear fun
tion, trigonometri
, et
.)



Appli
ations � HD 73526 � I.
• Two planets, nearly 2:1 mean motion resonan
e.
• A simple question: 
an the orbital in
lination be derivedpurely from RV data? Parameters:

N × {K, n, λ0, e cosω, e sin ω} , M⋆, sin i.
• Small in
lination ⇒ larger masses (i.e. m sin i is given) ⇒stronger perturbations.
• The whole RV tiem series is treated and modelled as an an-alyti
al fun
tion. Important: it is independent from stabilitystudies!
• It is good if the un
ertainty of sin i is smaller than 1.
• Methods: �t of the orbital elements, RV amplitudes and sin i,and un
ertainty estimations: Monte-Carlo (MCMC). An in-dependent estimation for the un
ertainties: Fisher-analysis.



Appli
ations � HD 73526 � II.Monte-Carlo (MCMC) distribution for sin i:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

sin(i)

HD73526

Fisher analysis: ∆(sin i) ≈ 0.19 ⇒ the two methods yield theroughly the same values!



Implementation � I.Basi
 implementation on an UNIX-like system:
• �Normal� implementation: C 
ode with ≈3.5 klo
 (in
luding a simple userinterfa
e that parses simple 
on�guration �les, some basi
 
haos dete
tionalgorithms, full implementation of the adaptive integration).
• Number of basi
 arithmeti
 operations (addition, subtra
tion, multipli
a-tion): N2O(M2), number of more 
omplex operations (division, exponen-tial and power, square root): N2.
• Problems related to stability investigations: independent ODEs for ea
hinitial 
ondition → parallel 
omputations.



Implementation � II.Implementation on a (GP)GPU ar
hite
ture:
• Can be made very e�e
tive:� no need for 
omplex operations at the most of the time; and� no intera
tion between the various initial 
onditions.
• Memory: although the Lie-integration requires �more� memory than anormal (RK, BS, . . . ) integration:� data still �t into the registers(!) of the GPU;� additionally, no need for the global (DRAM) memory at all (only for
ommuni
ating with the CPU and/or system DRAM); and� only minimal SRAM (higher level 
a
he) is needed (for global 
on-stants /masses, physi
al 
onstants/ and some initialization valuesrequired by the algorithm; su
h as ρ−2

ij and so on).
• Non-trivial issues: 
omputation on di�erent threads yields di�erent inte-gration times and 
omputing times as well.To be done, under 
onstru
tion, ongoing study, et
 . . .



Summary
• Lie-integration: very e�e
tive, 
an be applied easily andwithout losing (expensive) 
omputation time as an adap-tive integration s
heme, but there is no general form (i.e.algorithm or implementation).
• Linearized equations: derived almost automati
ally.
• Possibilites for analyti
al investigations if the model fun
tionis a result of an ordinary di�erential equation.
• Appli
ations: RV analysis, un
ertainty estimations.
• Implementation: normal (CPU) 
ode, GPU 
ode; rather
omplex, but. . .



Thank you


