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Preface

The 4" Austrian-Hungarian Workshop on Celestial Mechanics tolaice
from the237¢ — 25 of June 2005 in Budapest, Hungary. The host institute
was at this time the Department of Astronomy of the E6tvosvensity. The
participants were the members of the two working groups lefstial mechan-
ics and dynamical astronomy both at the host institute aridarnstitute for
Astronomy of Vienna University.

The talks covered a broad field of actual problems of celestechanics.
In connection with the dynamics of the Solar system, the awvaution of
the rotational motion of irregular satellites, the orbitefenination of near-
Earth asteroids, the dynamical behaviour and stabilityrofah asteroids, and
the determination of the secular frequencies of the plapsistem were dis-
cussed. Several talks dealt with the extrasolar planetestgsis, including the
stability of the habitable zones of multiple planet systethe dynamical be-
haviour of planetary motions arond binary star systemspussibility of the
existence of Trojan exoplanets, and the dynamical consegseof a stellar
intruder on a planetary system. General problems were &sassed, such as
the comparison of different chaos detecting methods, ahhehaviour in the
Sitnikov-problem, and the Lie-integration of linearizeguations.

The interesting discussions were continued in the evenimtiee traditional
way (see the proceedings of t& and3"¢ workshop) in friendly atmosphere.
The organization of the workshop was made possible by thpastipf the
"Stiftung Aktion Osterreich-Ungarn” under the grant 596ulThe investi-
gations on the exoplanetary systems were carried out inrtdmaeivork of
the "Dynamics of Exoplanetary Systems" project supportethb "Austrian-
Hungarian Scientific and Technological Foundation" untlergrant A-12/04.

RUDOLF DVORAK
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NEAR EARTH ASTEROIDS BASED ON
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D-07745 Jena, Germany

florian@astro.uni-jena.de

Abstract This work investigates the problem of NEA (Near Earth Asigsp dynamics.
Due to their many close encounters with the inner planegs;, thotion is highly
chaotic - which leads to problems when one wants to calctitetie orbits for
long time scales. As of the restrictions of the existing sifesations (which can
be applied only on short or mid term scales), also a stadidtieatment of NEAs
leads to ambigious results. We introduce a new classificattbeme, based on
Fuzzy Logic. With this method, it is possible to derive quiative and qualitativ
results on the dynamics of NEAs even for very long time scales

Keywords:  asteroids — NEAs — classification — chaos — dynamics — fuzgig le collisions

1. Introduction

Our Solar System is populated with a large number of bodieising the Sun
in more or less eccentric orbits. Near circular orbits — tthat of the planets —
do not cross the orbits of other bodies while smaller bodiekaown to suffer
from close approaches and even collisions, as we know fronymiaters on
the surfaces of the Solar System bodies. In this work we aestigating the
the so called “Near Earth Asteroids (NEAS)” whose orbitaiprihem close to
the Earth. We want to show the problems that arise when on¢sviardeal
with the longterm evolution of this asteroids and how they ba solved by
introducing a new classification scheme.
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2. Why a new classification of NEAS?

Why is there a need to classify Near Earth Asteroids (NEASYR wvhy
are the existent classifications no longer suitable for saspects of scientific
research? In order to answer this questions, one has tosiaddrwhy the
existing classifications where created at all. Up tow, treeetwo different
models of NEA classifications.

2.1 Shoemaker’s Model

The members of G4, thdearEarth Asteroids (=NEAS), are usually divided
into three subgroups

s the ATENS, with a semimajor axis smaller than the one of thehEa
and an aphelion distane@ = a(1 + e¢) > 0.983 AU (mean perihelion
distance of Earth)

s the APOLLOS, with a semimajor axis larger than or equal todihe of
the Earth and a perihelion distange= a(1 — e) < 1.017 AU (mean
aphelion distance of Earth)

m the AMORS, with a semimajor axis larger than the one of thet=amd
a perihelion distancé.017 AU < ¢ < 1.3 AU

Today (March 2006) the total number of discovered NEAs is72{®4
Atens, 1923 Apollos, 1672 Amors). NEAs larger than 1 km innuger is
about 2000 and that of the asteroids larger than 0.1 km in etiamis about
320 000 [8]. A new estimation with slightly different valuean be found in
Bottke et al. [1].

2.2 Milani’s Model

Milanis Model of asteroid classification was derived by thetadof the
SPACEGUARD project. This project includes data from thesgnation of
410 asteroids for 200 000 years. The classification of the foentioned 89
asteroids was performed by observing their long term benaVhere are four
main criteria :

= Values and changes of the orbital elements:(i, ¢, Q)
= Number and changes of node crossings (NC)

= Number and depth of the close approaches (CA)

= Resonancés

According to this main criteria, one distinguishes betwelea following
classes (for details see Milani et al. [7] or Sec. 4): GedgoapClass, Toro
Class, Kozai Class, Alinda Class, Oljato Class and ComeisCla
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2.3 Problems with the classification

The need for a new classification is easily explained if onesiclers the
dynamical evolution of NEAs: a large amount of NEAs suffensler continu-
ous close encounters with the inner planets of our solaesysBuch a close
encounter changes drastically the orbital elements of sher@id, especially
the semimajor axis. The strength of the change depends atefite of the
encounter and the masses involved. This can be seen in Rithete every
close encounter of the asteroid (10563) Izhdubar is refléat@ jump of the
semimajor axis. These close encounters and the resultianggels of orbital
elements make the orbits of the NEAs highly chaotic (see[dlsand [3] for
details on the chaotic behaviour of NEAS)
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Figure 1. The semimajor axis of the NEA (10563) Izhdubar Sox 10° years (lower graph)
and the encounters with the inner planets (upper graph)y éump in a reflects a close en-
counter.

How does this chaoticity affect the classifications? Figh@wss the evolu-
tion of the eccentricity and semimajor axis of an Amor agte(@993 BX3) in
thea — e plane. One can see that the asteroid (which was initialligénthe
Amor group) has crossed all group borders and has become den@ithe
Apollo group, then changed to an Aten; in the end, the astdras become a
Subaten (such changes of initial group have also been esport[2]). Here
one sees how the restrictions of the Aten/Apollo/Amor dfecsgion can cause
problems. Initially meant to be only used for observatiopatposes, these
groups are only valid for some 100 years. If one tries to afipyclasses for
longer time scales, one certainly has to fail — thus the Sla@enclassification
can not be used when one deals with the longterm dynamicgesbads. The
SPACEGUARD classification is based on the dynamics of theNE#s that
were obtained from numerical integrations for 200 000 yeattsus it can be
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used to classify the dynamical properties of NEAs for som@ Q00 years.
What happens now, if one tries to use these existing clasdics for other
purposes? — the classifications will fail and one will endeamajor difficul-
ties when dealing with the dynamics of NEAs. Table 1 showsiiean mem-
bership timeof the classification - that is the time a “mean” asteroidssge
inside its initial group. One can see that both classificetiare comparable
concerning these percentages.
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Figure 2.  Motion of 1993 BX3 in thea — e plane - the asteroid is a member of all three
classes (according to the Shoemaker classification) dtim@tegration time.

Table 1. Mean membership times (in percent of the integration time)tie Shoemaker and
the Spaceguard classification (the numbers for the Spaakglassification where taken from
Milani et al. (1989)).

Shoemaker classification
Atens Apollos  Amors
76.81 80.98 51.87

Spaceguard classification
Geographos Toro Kozai Alinda Eros Oljato
75.86 2290 91.70 55.05 83.72 65.13

2.4 Single objects versus groups

If the classifications can not be applied anymore when dgalitth longer
time scales, why not investigate only single objects? ®indjjects on chaotic
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trajectories can not be investigated independently — orsetdiavork with
groups of asteroids. If the properties one wants to invatgigre the ones
the existing classifications were made for (observationgperties, short/mid
term dynamics), there are no difficulties. But as shown inldise subsection,
there are certain problems were the chaoticity of NEAs méhiegs compli-
cated. If, for example, one wants to calculate the colligiarbability of 1993
BX83, Fig. 2 shows the problems that arise: to derive the sioli probability,
one has to take into account the data of the whole time-setiest means the
values of the orbital elements for all time steps to derivangls value. It was
shown [4] that it makes no sense to use this number — theioallobability
— as a property of 1993 BX3 itself: any other integration onthar machine
would result in a different number. Thus one has to use Statiand to inter-
pret the collision probability of 1993 BX3 as one contriloutito the common
collision probability of a certain group, whereof 1993 BX3a member. But
which group would be the right for 1993 BX3? Fig. 2 shows tletré is no
evident choice — the asteroid is a member of all three groupsgl the inte-
gration time.

2.5 Mixing

The behavior described above is call@iking’. Because of thehaoticity
it is difficult to investigate single objects. Because of thigingit is difficult
to investigate groups of objects. Thus, for certain prolslemn new way of
grouping asteroids is needed! For this purpose itis usefpétform a detailed
investigation on the mixing behaviour of NEAs. To obtain svradassification,
two properties of NEAs were especially important: the sadin probability
with the inner planets Venus, Earth and Mars andB@N (Border Crossing
Number) - a quantity defined as the number of times an asterogses any
group border in the Aten/Apollo/Amor classification. Themgameters were
calculated for all known NEAs (in 2003) - for details see [#he next section
will explain how they can be used to construct a new classidica

3. Fuzzy classification of NEAs

This section will give some general comments on fuzzy diassion and
then it will propose new fuzzy classes for NEAs. For an inti@itbn on fuzzy
sets see the appendix.

3.1 General remarks

In general, the process of fuzzy classification will procasddescribed in
the following:
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Definition: To obtain a fuzzy set, first of all, a valid definition has to
be found. Although fuzzy sets are mathematically exact tcocisons,
their definition remains relative That means, it is possible to translate
every “vague” linguistic definition into mathematical ntié&. Thus one
has to be carefuhowone defines a new class: e.g. although, in spoken
language, the words “large” and “tall” can often be interujed, there
exists a difference in their meaning. So a fuzzy class ofgdapeo-
ple” should not be identically with a fuzzy class of “tall gge’. When
defining fuzzy classes, one has always to be aware of the ngeahihe
definition.

Membership Functions: If the definition of the fuzzy class is set up,
one will have to obtain the membership function. These fonstshould
represent reality and describe the properties of objectedrbasic set
according to the definition. Thus one needs a certain paeartiet is
connected with the definition and according to the distidouf this
parameter among the members of the basic set, construcdamein-
bership function.

Classification: The objects of the basic set can now be classified ac-
cording to the membership functions. That means, one cd&sitheir
grade of membership to all defined fuzzy classes.

Analysis: After all objects were classified, they have to be analyzed.
This can be done by usingcuts (see Equ. (A.6)). As now, in contrary to
classical sets, objects can simultaneously be memberfeénedit fuzzy
sets, they are an adequate tool to obtain a deeper undensjafdhe
new groups: if amx-cut is applied on a fuzzy class, one obtains a clas-
sical set, whose members have special properties. E.g.ouhe apply

an a-cut with o« = 0.95 on the fuzzy set of “large people” (and obtains
a set containing only people that belong to this group withraadg of
membership larger than95). The important advantage lies therefore in
the cross relations of the members of@cut and the remaining other
fuzzy classes. The-cut represents an important feature of the objects
in the basic set (e.g. “being large”) — but every object hae alcertain
grade of membership to the other groups that were define@stigat-

ing the distribution of these grades of membership henttefdelivers
information on the additional “tendencies” that the olgdtave besides
their dominant features. This makes a fuzzy classificatgpeeially in-
teresting for the investigation of the long term dynamicasteroids!
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3.2 Fuzzy NEA classes

The most interesting (and important) feature of NEAs is thespbility that
they can collide with the planets of the inner Solar SystehusT the proposed
new classification will describe the collisional propestief NEAs. As of the
chaoticity of NEAs anexactprediction of collisions (that is, forecasting the
date, the time and the place of a collision) is only possibtevéry short time
scales (some hundred years). In this work, the focus lieh®fong term be-
havior and the collisioprobabilitiesof the asteroids. The fuzzy classification
shall now be used to investigate ttemdency of a collisiofwhich is a slightly
different feature). An asteroid, that e.g., due to its arlbids many close en-
counters with Venus will of course also have a high colligmwabability with
Venus — the “Venus-crossing” orbit is the dominant featurets dynamics.
But deep close encounters with Venus can cauaede to change drastically
and bring the asteroid also close to Earth — so a Venus-agp$HEA can also
have a certain tendency for a collision with Earth (and alsws)yl These inter-
actions and connections between the planet crossing NEAsemvestigated
quantitatively and qualitatively by using fuzzy classed arcuts.

3.2.1 Definition.  As said before, defining fuzzy classes needs to be
done carefully. The purpose of the proposed new classifitgito investigate
the connections between planet crossing asteroids. Sefimition of the new
NEA classes will be the following:

m The class of NEAs that can collide with Venus.
m The class of NEAs that can collide with Earth.

m The class of NEAs that can collide with Mars.

Note that the classes are defined by using the words “cardebllian as-
teroid, that “can collide” with Earth not necessarily hastdide with Earth!
As said before, the proposed new classification will be ueddvestigate the
interactions between the planet crossing asteroids — thus strict definition
would not give the desired results. To get also some infdonain the varia-
tions of the orbital elements, an additional class is inieeai:

m The class of NEAs that show almost no mixing.

“Mixing” is defined as above (asteroids that cross group éarduring inte-
gration time). The underlying classification will be the @wording to Shoe-
maker. The mixing in the Aten/Apollo/Amor classificatiorvgs (for long time
scales) information on the variations @&nde. If they are very large, the as-
teroid will cross many group borders and have a larger amafumixing. As
the group borders are “centered” on Earth and (more or leadjad-off by the
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influence of Venus and Mars, the mixing also gives infornrgtibthe motion

of the asteroid is “bounded” or not: as described in Sec. i2iBe asteroid
moves in the right region, larger variationsdrande do not necessarily lead
to the crossing of group borders — e.g. an asteroid with napelemriations in

a ande can still be in the region between the orbits of Venus andhEamd
thus an Aten) for a very long time and is not related to the faifmn of the
group of Mars-crossing asteroids — hiuit develops tendencies to encounter
also Mars, this will be reflected by an increasing amount odfimgi*.

3.2.2 Membership Functions.  After having defined the new fuzzy
classes

= G1: The class of NEAs that show almost no mixing.
m  G2: The class of NEAs that can collide with Venus.
= G3: The class of NEAs that can collide with Earth.
= G4: The class of NEAs that can collide with Mars.

now the membership functions have to be derived. One statitsan in-
vestigation of the distribution of the basic parameters$ #ina most important
for these groups: for G1 this is the BCN, for G2, G3 and G4 tresethe
close encounters with Venus, Earth and Mars. The distdhatfor these four
guantities are shown in Fig. 3.

These distributions can now be used to obtain a fuzzy mermnipeienction:

= 1: Fita function through the data (this can be e.g. a linearpaiation).
= 2: Normalize this function to have only values between 0 and 1.

= 3: Adjust this function to make sure that it really describesitoperties
of the desired group.

Fig. 4 shows now the membership functions for the four ckagde neces-
sary numerical integrations of the asteroids were done witial orbital ele-
ments of the JPL Horizons system using the Lie-Series iateyr technique
(see [6, 5])

It can be seen that the shape of the membership functions 2eG&are
quite similar - which is not very surprising because of thérikon of the
groups: they were meant to describe classes of asteroids ¢ém collide"
with a planet. Having in mind the chaotic motion of NEAs, ivery unlikely
that an asteroid has no close encounters with any planetigliis evolution
for long times. Thus, also the grade of membership in thesgsek will be
high for a large amount of asteroids. If one would construateanbership
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Figure 3. Distribution of BCN (top left) and close encounters with Msr(top right), Earth
(bottom left), Mars (bottom right) for the real NEAs (y scédogarithmic).

function for the group ofasteroids that are very likely to collide with Earth"
or "asteroids that could be really dangerous for Eartishe would obtain a
membership function which is much less steep than the oresepted here.
The largest increase shows the membership function for Elclass of NEAs
that are probable to collide with Mars. As Mars has a very bmaks, it is
also not so likely for an asteroid to collide with it. Thabnost anyasteroid
that shows at least some encounters with Mars should bedaihg group with
a higher grade of membership — because due to the chaotiometéry close
encounter gives rise to a probable collision in the follagvavolution.

3.2.3 Classification. With the membership functions derived in the last
section, it is now possible to calculate the grade of menfijerst every real
NEA to G1-G4.

Fig. 5 shows the distribution of all real NEAs according teithgrade of
membership to G1-G4. It can be seen, that for G1, most adtehaive a grade
of membership of- 1 and thus seem to show only small or moderate changes
in ¢ ande. The local maximum of the distribution sets néafor the interme-
diate values, there is a slight increase of the number of@dsefrom values for
the grade of membership 62 up t00.9. For G2, G3 and G4, most asteroids
have a grade of membership-©f0. This maximum is well defined for G2 and
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Figure 4. Membership function for the group G1 (top left), G2 (top tigit3 (bottom left),
G4 (bottom right).

G3 but for G4, asteroids with a zero grade of membership haiyeaslight
majority. Again, for G2 and G3 the second maximum sets ndaesaf1; for

G4 at slightly smaller values. Also the intermediate vakteswy the same char-
acteristic: the number of asteroids decreases slightly gpades of member-
ship of~ 0.6, then increases again. The grades of membership for all REAs
can be found online undérttp: //www.astro.uni-jena.de/~florian.

4., Results

Before starting with analyzing the new classes by meansafts, the valid-
ity of the classification can also be checked by a comparistmthe existing
SPACEGUARD classification. As Milani et al. [7] have alsosddied the as-
teroids i.a. according to their collision probabilitiesdarlose encounters the
results should be consistent — at least there, where theldgsifications are
comparable. The new fuzzy classification will now also ideuhe long term
behavior; additionally the basic set of asteroids was mugdpdn (Milani et al.
could only use 410 asteroids — here 2442 NEAs were includeat)compari-
son, we can look at the namesakes of the seven SPACEGUARS$2slas

m (1620) Geographos:according to the SPACEGU‘Dynamical evolution
and collisions of asteroids with EarthARD classification,asteroid of
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Figure 5. Distribution of real NEAs according to their grade of menghép to G1 (top left),
G2 (top right), G3 (bottom left) and G4 (bottom right) (y se& logarithmic).

the Geographos group should show many close approachesthosid
some to Venus. This means that physical collisions withizaih occur,
if the time scale is long enough. The semimajor axis of a Gauyrs
is almost constant; the eccentricity shows secular trendswall scales
— thus it is not expected to move very much in the e plane. (1620)
Geographos has a membership grade to GlL-efo it is indeed a full
member of the group of asteroids that show almost no mixirdyitn
semimajor axis and eccentricity are not expected to chaagemuch.
Also the membership grade to G2 (0.03) and G3 (0.76) refledbé&mav-
ior described above. The membership grade to G4 (0.86) showshe
influence of the long time scales: during the integratioretisome deep
close encounters can change drastically the semimajoioé=s aster-
oid inside the Geographos class (see e.g. figure 5 in [7] foatteroid
(1862) Apollo) and thus force the asteroid to leave the gr@epending
on the “direction” of the close encounter such an asteromnmav have
also many close encounters with Mars (like for (1620) Gegplgoa) or
with Venus (like for (1862) Apollo, which has a grade of memsbép to
G2=0.91). This is a good example how the problems of miximghgr
passed by the new fuzzy classification: in the SPACEGUARBxsifiza-
tion, after the close encounter with Venus, (1862) Apollswwa longer
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a member of the Geographos group — in the fuzzy classificatiow-
ever, all the dynamical properties that belong both, to teedsaphos
group and the one, (1862) Apollo would enter afterwards, kai@vn
simultaneously.

(1685) Toro: according to the SPACEGUARD classification an aster-
oid of the Toro group shows close approaches with Earth.sTare the
most unstable group of the SPACEGUARD classification — tkeey to
leave the group after very short times (In [7], the group ablasteroids
has only 9 members — thus the statistics are very bad in taffcal-
though Toros have close encounters with Earth, they are steifow;
Toros are also protected against collision with Earth by mmation
resonanceslf they are Venus crossers (which happens not very often),
the close approaches with Venus could result in very largsgés of
the semimajor axis (and thus the resonance with Earth igtist). In
general, the semimajor axis and eccentricity show only lsvaahtions.
(1685) Toro indeed has a membership grade to G1 -efso its semi-
major axis and eccentricity are not expected to change veghmThe
membership grade to G2 (asteroids that can collide with ¥ers0 —
also in [7] (1685) Toro is in resonance with Venus and thuseuted
from close encounters. Membership grades to G3 (0.77) an@@G3)
show, that for longtime integration the fore mentioned nesta protec-
tion against close encounters with Earth ceases to exise-taldeep
close approaches, also encounters with Mars are possible.

(1863) Antinous: it was not possible to compare the results for (3040)
Kozai (the most prominent member of the class of Kozai agtsyde-
cause although it belongs to the Mars-crossing asterdi&lperihelion
distance is larger thah3 and thus is not a NEA in strict sense (Milani et
al. did not just use NEAs but all planet crossing asteroidstfeir clas-
sification). (1863) Antinous is, according to the SPACEGUA&assi-
fication an asteroid of the Kozai group. Kozai asteroids@ue,to Kozai
resonances of type I, protected against close encountdreddlisions.
The evolution of the semimajor axis is very regular and shamlg small
oscillations. The group of Kozai asteroids is the most staldss in the
SPACEGUARD classification. (1863) Antinous indeed showes dbi-
scribed behavior: the grade of membership to Gl that to G2 (0.23),
G3 (0.16) and G4 (0.14) is considerably smaller than thaheffore
mentioned asteroids. Nevertheless, although Kozai agsestiould be
protected from collisions, the time scales, that the fuzagsification is
based on, are longer than the protection time scale — thugrétukes of
membership to G2-G4 are not zero.
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m (887) Alinda: according to SPACEGUARD classification, asteroids of
the Alinda group are in (low order) mean motion resonancés Juipiter.
The Alinda class is the one, for which the most difficult boairydprob-
lems existed — thus it was often difficult to decide, if an astewas
an Alinda or not. Their eccentricities can undergo largenges, the
semimajor axes oscillate around the resonant value. Asofpgihobable
large changes asteroids can encounter all inner planetsdoften pro-
tected against collision by resonances.(887) Alinda hanalsr grade
of membership to G1 (0.93) than the asteroids mentionedrdgeédso
the grades of membership to G2 (0.12), G3 (0.08) and G4 (@f®=)
considerably smaller — showing the resonant protection.

m (433) Eros: according to SPACEGUARD classification, asteroids of
the Eros group are those, which do not cross the orbit of Beetlause
their perihelion is always higher than 1 AU. All Eros astdsoare Mars
crossers and have close approaches with Mars. The ecaergraf Eros
asteroids can show very large changes. The grade of menpefsh
(433) Eros to G2 and G3 i it is only a member of G4 (0.72). Also the
membership to G1 (0.9) is smaller than 1, indicating thedaghanges
of a ande. Another good example for the behavior of Eros asteroids is
(719) Albert. Its membership to G1 (0.08) is very low (inding very
large changes in ande), again the grade of membership to G2 and G3
is zero and that to G4 is 0.32.

= (2201) Oljato: according to the SPACEGUARD classification, aster-
oids of the Oljato group have orbits that show large-scas®tb effects.
They have very high eccentricities and can have close apjpesao all
inner planets. (2201) Oljato indeed has a grade of memigetsi®1 of
0.04, indicating the chaotic changesdmnde; it also shows a medium
grade of membership to G2 (0.38), G3 (0.36) and G4 (0.28) s ihu
encounters all inner planets.

s Comet class: a comparison with the class of Comet asteroids of the
SPACEGUARD classification is not possible in this work. Tbiass
consists of all asteroids that spent a sufficient part ofjiration time in
the outer Solar System. In this work, asteroids with thatlenr were
excluded from the fuzzy classification — first because ofaea®f com-
parison: some of these asteroids escaped the inner Solensist fast
that not enough data would be left to calculate a valid mesttiigrade.
Second, to compare the data with the SPACEGUARD classificait
would have been also necessary to investigate the entry/@tki of the
asteroid in the inner Solar System, which would have regutt¢he cal-
culation of hyperbolic/parabolic orbits which lies outsithe framework
of this study
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The new fuzzy classification is indeed capabale to deschibeynamics of
NEAs. In contrary to the SPACEGUARD classification, now tiffects that
take only place on long time scales are included; also thel@mo of mixing
has been bypassed!

4.1 a-cut analysis

In contrary to classical sets, the asteroids can simulisigde members
in different fuzzy sets. Thus an adequate tool to invesigla¢ fuzzy classes
has to be used. As shown beforecuts are a proper way to investigate fuzzy
classes. By applying an-cut to a certain fuzzy group, one obtains classical
sets and can now investigate the properties of its membensthis purpose,
out of the fuzzy classes Gasteroids that can collide”with a planet, classi-
cal sets containing that bodies, that aegy likely to collideare extracted by
means ol-cuts. Then the members of the classical sets can be exartned
cording to their grade of membership to the remaining groufiss type of
investigation is the greatest advantage of the new fuzzsifiaation. In con-
trary to existing theories, where asteroids can inhabit onk class at time and
transitions between the classes can only be investigatBthagpasses by, the
fuzzy classes allow one to examine the membership to therdiit classesi-
multaneously We will show the details of the-cut analysis only in one case;
additional studies can be found in [4].

411 G399 The setG3>9 contains all NEAs with.gs larger than
0.9 — these aredsteroids that are likely to collide with Earth This group

contains 329 bodies. Fig. 6 shows the distribution of theseraids according
to their grade of membershipéo G1, G2 and G4.

Figure 6. Distribution of asteroids in the groufi3~°° according to their grade of member-
ship to G1, G2 and G4.

Unlike G2>%9, G399 has more members with a medium grade of mem-
bership $0.76%), only 47.52% have high grades. The fact, that NEAs that are
likely to collide with Earth show more mixing (and thus largeriations ina
ande) is first due to the type of basic groups that is used to dehgenixing:
the Shoemaker classification is “centered” on Earth — so@dgethat often
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come close to Earth also have a higher probability to crassdinder between
Atens and Apollos. But Fig. 6 (middle and right) shows, thsteeoids from
G'3>09 also have larger variations afande in general and thus come (very)
close to Venus and Mars tod6.81% of them have high grades of membership
to G2,34.95% to G4. An important property aff3>% asteroids can be seen
in the difference of low and intermediate values to G3 and @y 11.85% of
them have medium grades to G2, whereas three times moremf(84e04%)
have intermediates grades to G4. Thus, the “connectiondet Earth and
Mars-crossing asteroids is more fluent: NEAs that are likelgollide with
Earth in the majority are also likely to collide with Mars —daralso in the
majority, are likely to collide with Venus; but the lack oftermediate grades
of membership to G2 shows that the interaction between EaxthVenus is
much strongerlf deep close encounters bring an asteroid near Venus (which
is the case for slightly more than half of asteroids), it is/M@obable that they
have very much close encounters (and thus also a highesionliprobability)
with Venus. On the other hand, if they come close to Mars (Wwiscalso the
case for slighlty more than half of asteroids) the probgbthat they have a
high or intermediate number of close encounters is almasale@4.04% of
G'3>99 have medium grades of memberstip,95% have high grades). Earth
is able to “protect” its crossing asteroids much more edsen the influence
of Mars than that of Venus.

5. Conclusions

Concerning the question of the danger of Earth by NEAs, Fighdws in
detail, how the different groups consist of members of tleiogroups. One
should stress again the fact, that due to the combinatiomzai/fset theory and
dynamical studies of NEAs, it was possible to obtamuantitativelydescrip-
tion of the planet-crossing behaviour on long time scalémtwas not possible
in the past because of the chaoticity of the NEAs and the problthat were
due to the fixed, not flexible existing classifications! Theugr of NEAs that
are likely to collide with Earth not only itself has the lasg@umber of mem-
bers, also the asteroids in the other groups are more ofterbers in the group
of NEAs that are likely to collide with Earth than vice verdais leads to the
following conclusion: NEAs move on orbits with semimajoreaxrom~ 0.6
to ~ 3 AU (depending on their eccentricity). They can come cl@sel(also
collide) with all large inner planets. For long time scali NEA population
is of course not constant: their number can be reduced duellisi@ns with
the planets or the sun (“sun grazers”); it can be increaseabst®roids that are
thrown out of the main belt. Buds longas they are NEAs, independent from
their position in thex — e plane, it was shown by introducing fuzzy classes,
that they have the tendency to evolve Earth-crossing orbitas, for very long
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mﬂ %
NEAs that are likely NEAs that are likely
to collide with Venus to collide with Earth

56.40 %

28.15%
NEAs that are likely
to collide with Mars

Figure 7. Groups of asteroids that are likely to collide with a plariEte arrows show, how
many NEAs of one group, are also members of an other group.

time scales, the major reason for the decrease of NEA papulaill be due
to collision with Earth! Encounter and collision frequessiof asteroids with
Earth (and the other planets) will therefore differ from therent values when
including the evolution of NEAS for very long times. Fututedies, that have
to include the flux from main belt asteroids to NEAs and als® effect of
sun-grazing bodies, should confirm these statistical tesuimerically.

Appendix: Fuzzy sets

Fuzzy set theorgr Fuzzy Logiavas developed in 1965 by L.A. Zadeh [10]. Fuzzy sets are an
extension of classical sets. A classical seénis-valued for every setA there exists a function
fa that has either the valuieor 0 with:

fa(z)=1eozxe Aand fa(z) =0z ¢ A. (A1)

This function is callectharacteristic functiorof A. Fuzzy sets, in contrary, have a character-
istic functionyu 4 defined forall values between (0,19lescribing the degree to which an element
x is included in the sefl. Fig. A.1 shows an example of the membership functions d@egr
the degree of membership to the groups of "short", "huge™anerage"” sized people.

1 small average huge

membership function p
o
w

0
140 160 180 200
height [cm]

Figure A.1. Fuzzy membership functions for the classes "short", "huagel"average".
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Fuzzy sets have the following properties:

m  Classical sets can be interpreted as fuzzy sets with mehipeapades of only) and1
m  Two fuzzy setsA and B are equal over a whole sat if

A=B & pa(z) =pp(zr) VYreX (A.2)

®  The union of fuzzy setsl and B is the fuzzy set defined by the following membership
function:

pave(z) = pa(z) V ps(r) (A3)

m  The intersection of fuzzy setd and B is the fuzzy set defined by the following mem-
bership function:

pans(z) = pa(z) A ps(z) (A.4)
m  The complementl of a fuzzy setd is defined by the following membership function:
pi(z) =1—pa(z) (A.5)
m  Forafuzzy set A
A ={z € X | pa(z) > a}, a€[0,1] (A.6)
AT ={z e X | pa(z) > a}, o€ [0,1] (A7)

are called theveak a-cut and thestrong a-cut, respectively.
m  Thea-cuts of fuzzy sets are classical sets.

Notes

1. This definition follows [9]

2. The typical periods of resonances are longer than 206 y&refore the analysis of resonances is
not affected by the filtering process.

3. In this work, the wordmixingis only used to describe the fact that an asteroid changes dre
class to another — it is not meant to be confused with othenitiefis of mixing (like in statistics or chaos
theory).

4. Note that the mixing itself does not depend on the type adification (see Sec. 2.3) — the
Aten/Apollo/Amor classes were chosen because they are siogiier to handle than the SPACEGUARD
classification.

5. Note that here some asteroids were excluded becausesttegyeel the Solar System during integra-
tion time

6. Inthis context, the word “unstable” is not related to tabstability! It only means, that asteroids do
not fulfill the requirements to be a Toro for long time scaled ahange to other groups often.

7. Here and in the followinghigh grades of membership are defined;y; > 0.9, mediumgrades by
0.1 < pgi < 0.9 andlow grades byug; < 0.1.
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Abstract This paper describes a method to calculate the elementsitfadra celestial
body, detected by two telescopes situated in the Lagrampans L4 and Ls
by two satellites. Here the angles between the object angddims L4 and L5
are surveyed. Then it is possible to calculate by only thesemeasurements
simultaneous in these points all elements of orbit of theatet object very fast
and accurate.

Keywords:  NEAs — observation — Lagrange points

1. Introduction

The problem to calculate the elements of the orbit of a deteobject was
solved in the beginning of the ninetenth century by the nastad J. P. Laplace
and C. F. Gauss. We need in order to use these methods ateastbserva-
tions fromonepoint (Earth or satellite). Both methods have the disachgmt
that after the first measurement more measurements aresagc@s order to
approximate the elements of orbit better and béttétr is assumed, that one
satellite is situated in the Lagrangian Poinf and a second one ih;. The
satellites are equipped with telescopes, in order to obsand to measure the
angles of objects in the plane of the Ecliptic and also thegricular an-
gles to this plane. With these angles it is possible, to tatletthe distance
of a detected object, to the Earth and the Sun by only one wdusan. Also
it is possible to computer the other orbital elements of satlobject by two
observations.

21
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2. Calculation of the distance AE by the anglesx and 3
measured inL, and L5

mmm Plane and orbit of the object

Ecliptic plane and orbit of the Earth

Figure 1. Oblique view

From the pointd.4 and L5 the angles are measured in the plane of the Eclip-
tic (o in Ly and g in L5) and the angles of elevatiogy(at L4, and(; at Ls).
For the orientation see Fig?2

2.1 Calculation of the distancesi s, and d 45 in the
triangle A :AL,Ls:

Here the telescope ih, (anglec) is orientated with)° in the direction to
Ls and the angle counts clockwise. The telescopkgsilangle() is orientated
with 0° and counts conterclockwise. Therefore it is possible ¢hahd S can
accept values betwed¥ and360° (see Fig. 2).
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A

Figure 2. Orientation of the angles

For anglesx* and 3, betweer270° and360° we calculate with the angles
o/ = 360° — o* respectivelyd’ = 360° — 3*.

Known are the distances between the Lagrangian pdintnd Ls; and also
the distanced., and L5 from the Earth {4 — Ls = dys = V3 AU). It
is assumed that the necessery anglemnd 5 are determined with very high
precision simultaneous.

We observe the angles and 5 with errors Aa and A3. Also we can
observe the angles between the the two Lagrangian pointshendarth.
These observations are “surplus measures”, because tdéicory + 3 =
(o/ +30°) 4+ (0 + 30°) exists ¢ resp.3’ are the angles object — Lagrangian
point — Earth).

First we have to calculate the distanekg, = distancel, — object andi 45
= distancel; — object. The calculation is done in the plane of the Eclifgée
Equ. (1) and Equ. (2)).

B sin 3
and: .
sin «
dAS = d45 m (2)

2.2 Distance AE by mean of the anglea and 3 .

We calculate now the distance Earth — objéch the plane of the Ecliptic by
the calculated anglesand( in the triangle Earth £, — object, resp. the trian-
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Figure 3. Calculation of the distancess4 andd as

gle Earth —L5- object (see Equs. (3) and (4) also see Fig. 3). The reaidista
Earth — object now we can calculate with the measured an§lelevation(,
in Ly resp.(sin Ls.

In the same manner we can calculate the distaic€Sun — object) by the
calculated angle$ andw in the Plane of the Ecliptic. (see Equs. (3) and (6)
also Fig. 3) Also we can calculate the real distafey the angleg, and(s.

It is useful to make these calculations by the distahge- L5 = dy5 =
v/3 AU, because this distance is the longest in this configuratihby this
kind of calculation we achieve the best values (All valueargjles are given in
degrees, because the telescopes should show degreegjetinaocalculate the
anglesn and ¢, which are necessary to determine the distance Earth —tobjec
resp. the angle§ andw for the distance Sun — object , there is a distinction
necessary, because the anglesnd 3 can be smaller or bigger thao° .

The values of” in the plane of the ecliptic are:

r = dag M (3)
sin 7
and: ) 200
= das sin (8 — 30°) (4)
sin (

now we can set Equ. (3) = Equ. (4):
sin (o — 30°) sin (8 — 30°)

d
Al sin n sin ¢

()
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Also we can calculate:

sin (o 4 30°)

R =das— — : (6)
e in (3 + 30°)
sin (8 + 30°
Ro=das =0 0
and in similiar manner: Equ. (6) = Equ. (7)
sin (o + 30° sin (3 + 30°
iR . A ) ®)
sin & sin w
Importing auxiliar valueg, h1,hs we get the following equations:
sin
y o= = b 9)
SN &
sin (o — 30°)
hy = ————= 10
! sin (8 — 30°) (10)
sin (o 4 30°)
hoy = ——  — 7 11
2 sin (5 + 30°) (1)

Now we can calculate the following equations for the anglasd¢ by mean
of Equ. (3) and Equ. (4)

V3yh
tann—yh1_2 (12)
and Y
3
tan ¢ 1 —oyh, (13)
and for the angles andw by mean of Equ. (6) and Equ. (7).
V3yho
tanf—yhz_2 (14)
and: 3
3
tanw = Tth (15)

With these angles from the Equ. (12) or Equ. (13) and Equ. (Bqu. (4)
now we can calculate’ and R’ by the equations Equ. (6) or Equ. (7) by the
equations: Equ. (14) or Equ. (15). The possibility to catet’ and R’ by two
calculations should be used in every case in order to cotfteatalculations.
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2.3 Observation of the angles; and ¢ from the Earth.

An additional possibility to determine the distance Eartbbject directly
from the Earth. This are the anglesand(’ (see Fig. 3). After reduction of
these angles to the center of the Earth we can find the angiesi (. From
this indirect determination and the values of the angles bgsuring from/4
and Lsnow we can calculate an average value and so we have moreasecur
values.

2.3.1 Another possibility is the calculation with the Cosie theorem.
With the triangles:L, — Sun — object, o5 — Sun — object it is possible to

calculateR’ (distance Sun — object, see Fig. 3) Also it is possible toutater’

(distance Earth - object) with the trianglg — Earth — object, or the triangles

— Earth — object . The distancés, andd 45 are known from the calculations

from chapter 1.2. The distance Earthl.; and Earth— L5 is known. See

Equ. (1) and Equ. (2)

r = \/d?44—|—1—2d,44 cos (a — 30°) (16)

R = \/d?44—1—1—2d,44 cos (a + 30°) (17)
or:

Y= \/d§45 41— 2das cos (8 — 30°) (18)

R = (/@ +1—2das cos (6 +30°) (19)

We do not use this kind of calculation because of the minocipi@n o the
square root.

2.4 Determination of the distance AE = and R from »’
and R’ in the plane of the Ecliptic.

Now we can calculate by the measured elevation — arglés L, and(s in
L5 the distances and R: (See Equ. (25) or Equ. (26) for the distancand
Equ. (28) or Equ. (29) foR )

h = dagtan ¢ (20)
or
h = dA5 tan C5 (21)
By the calculation ofi 44 rsp. d 45 from Equ. (1) and Equ. (2) we can find:
h=dis—2%  tan g (22)

sin (o + )
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or
sin 3
=dys ———t 23
h = dys sin (o + 5) an (s (23)
and with:
r? =" n? (24)
r= \/7“’2 + d?, tan? ¢4 (25)
or
r= \/T’2 + d? tan? (s (26)
and for the distance Sun — object:
R*=R?+hn? (27)
R=\/R? + &, tan? (4 (28)
or
R =[R2 + & tan? G; (29)

The values forl 44 andd 45 ar known from Equ. (1) and Equ. (2).

For small values of the angleés we cannot find exact values ferand R ,
but that means only, that the position of the object lies Ipgarthe plane of
the Ecliptic, therefore we can say that the distances antloisient are:R ~
R andr ~¢'. 4

3. Calculation of the elements of orbit of the object
pa = vp+(60°—w) (30)
$YE = UVUp — (600 — f) (31)
and .
pa=vp—5w=F (32)

3.1 Calculation of the rectangular coordinates of the
object.

Now it is possible to calculate the rectangular coordinégshe angles
andw and the angleo4 and (see Fig. 4 and Equ. (32)):
Therefore the rectangular coordinat€s,Y 4, Z4 are now:
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Figure 4. Calculation of the elements of orbit

X4 = R cospy (33)
Yy = R'sinpy (34)
Zx = h (35)

The calculation ofp4 can be done by the Mean Anomaly by Kepler's
equation. tq is the time of passing the perihel. These values come from the
U.S. Naval Observatory, Astronomical Applications Depeait 2001: Earth’s
seasons; Equinoxes, Solstices, Perihelon, and Apheligr2085 . (e.g for
2005 January 2.at 1h UT).

vg is the True Anomaly of the earth in the moment of observation.

3.2 Determination of the plane of orbit

From the observation of two or more locations of the astewedcan cal-
culate by the distanceR’ and the elevatiorh above the plane of Ecliptic the
equation of the plane of orbit in rectangular and polar coartes as follows:

Because the Sun as origin of the system lies in the plane @f ore have
the equation:

ar+by+z=0 (36)

With two values of the vectoR (X, Y, Z) (see Equ. (33) to Equ. (35)) the
coefficients of the plane of orbit are:
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Ya1ho —Yao hy
a = 37
Xa1Yar — Xa2Yar (37)
Xathy — Xaohy
Xa1Yar Yau

To calculate the trace of the plane of orbit with the Planehef Ecliptic
z = 0 so the equation of the plane igx + by = 0, or with the values for
andb:

b (38)

(YAl hQ—YAghl):L’—i-(XAl hQ—XAghl)y:O (39)
After the first observation it is possible to make more measof the angles.
So we do a smoothing of the values with the method of Leastr&gqu/e have
n — 2 more values then we need. Therefore we can calculate thesvafithe
parameters andb more and more exactly.
Forn measurements the parametemndb are therefore:

n n n n
Z%’yz’ Zyz‘zi - Zﬂ%zi Zyiyz‘
i=1 i=1 i=1 i=1
= 40
a 5 (40)
n n n n
le?z'fb‘z‘ Zyizi - sz’yz’ inzi
i=1 i=1 =

— Dz’:l i=1 (41)

n 2 n n
D = (Z X yz> — Z Xi X4 Z Yi Yi (42)
=1 =1 =1

The gradient of the plane of orbit can calculated from twoeobetions as
follows:

N = ﬁl X éi+1 (43)
and so we get for the gradient:
1 = arc cos (&) (44)
[N
3.3 Calculation of the other necessary parameters of the

orbit

We assume: After the first measurement of the angles furthesreations
follow. By two measures at timegg and¢, with a relatively short difference of
time, now it is possible to calculate the velocity of the esittas follows:

L By Ry

== 45
o= (45)
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and the vector of angular momentuth
é = ﬁlg X 1712 (46)

Also we calculate the Runge — Lenz Vectr

—

]3 = _’12 X é — ]6‘2 7:,12 (47)
|712]

The distance of Perihelian now is (see Equ. (48))

w = arc cos (ﬂ) (48)
|P||N]

for N # 0. If N = 0 ist, the slope of the orbit= 0.
By substituting the Gauss — const&nand the value of the angular momen-

um C itis possible to calculate by the following equation thegmaeterp (see
Equ. (49)) of the equation of orbit:

2
= (F) (49)

From the initial values of? andvg we can calculate the specific enerfy
by

Ey= = Jvia* — =— (50)

With this valueEy, from Equ. (50) we can calculate the excentricity of the
orbite.

Eo|CJ2
e=1+2 011,4‘ (51)
and the major axis by Equ. (52)
1

The further values of the orbif2 (see Equ. (53)) and (see Equ. (54)) we
also can calculate by the equations:

Q0 = arccos (M) (53)

W = arccos (P‘N> (54)
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and again (see Equ. (55))
Cs
C|
So we have all elemtes of the orbit of the asteroid by two alagiens of the
anglesc andg.
This method was preferred, because the for this method segebasis is
with /3 AU the longest basis that could be easy realised. (The ooitladf
the Lagrangian Points is very small and could be taken in rby@n error

calculation.). Also all observations are free from influesof the earth’s at-
mosphere.

1 = arc cos

(55)

4. Conclusion

By observation of objects by satellites positioned in thgraagian points
and simultaneous determination of the angleand 5 and it is possible to
calculate the distancegEarth — object) andk (Sun — object) only by one cal-
culation. By two simultaneous observations we can calewfbther elements
of orbit of the detected methods very exactly.

Notes

1. After a meeting between R. Dvorak and W. Grandl about ttesipdity to observe objects from the
Lagranian pointd.4 and L5 by satellites.

2. Note: This method is not applicable for anglesand 3 = 90°, or 270°. If « and3 = 0°,
a = 180°,8 =0° ora = 0°, B = 180°, or « and3 = 180°, the object is situated on the straight line
L4 — L5 and it is not possible to calculate the position for any amglelevation¢;. (The object lies in a
plane, perpendicular to the plane of the Ecliptic, wichuw@s the straight linés — L5 )

3. The possibility to use the triangles Earth — objeét+resp. Earth — object &5 in order to determine
r’ should not be used, because the distance Eafthresp. Earth -5 is only 1 AU and therefore smaller
then the distancé, — Ls = v/3 AU.

4. In the case that the position of the object lies in a plamrpgu®licular to the plane of the Ecliptic
throughLsand L5, the anglesx and 3 are0° or 180° and therefore there exists no possibility to determine
the distances’, and R’ but we can measure the angles at an other time
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Abstract In this investigation we integrated the orbits of the plan&tour Solar System
over 1 hillion years (-500 million back and 500 million inteet future) based on
the Newtonian model of the Solar System including the 8 mplanets Mer-
cury to Neptune. For the integration we used the very staidiehéghly precise
Lie-Integration method. The output of the simulation were bsculating or-
bital elements, stored every 66,6 years. We transformedateeset to Laplace-
Lagrange variables and analyzed it using windowed fourgarsformation with
a windowsize of 10 million years, overlapping with 1 milligears. In this pa-
per we present the maximum and minimum values of the orlgatents of the
planets and give the time varying fundamental frequendiedl eight planets.

Keywords:  Solar System - Fundamental Frequencies - Windowed Fourésiorm

1. Introduction

The numerical simulation of the dynamics of our Solar Systencomputer
systems is a field not older than 50 years. Various people bege working
on it: Eckert et al. (1951) integrated the system, using tbhatér most planets
over3.5 x 10% years. Cohen & Hubbard (1973), Kinoshita & Nakai (1984),
Applegate et al. (1986), Sussman & Wisdom (1988), Nobililet(4989),
Nakai & Kinoshita & (1995) used the same model (5 planets)vauied the
stepsize (between 0.5 and 40 days) and increased the inegtiane of the
simulation. Newhall et al. (1983) integrated the whole sysbf major planets
(9) using a very small stepsize (0.25 days), so did Richards\@/alker (1989)
(0.5 days), Quinn et al. (1991) (0.75 days), or Sussman arsdldfi (1992)
using a stepsize of 7.2 days but integrated the whole sysieim®? years. Ito
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etal. (1996) increased the simulation time ugx 10'° years but only took
the outer four planets into account. Duncan & Lissauer (1288d Venus to
Neptune in their model and integrated the systemi @3ryears.

The main question is still open: How long will our Solar Systée sta-
ble inspite of its chaotical nature? Are there resonancégghawill kick one
of our planets from its nowadays known orbit, thus leading ttompletely
different configuration of our Solar System? Laskar (199%9dia semiana-
lytical solution and showed, that there are no secular trans in the semi
major axes. He integrated the Solar System in his paper for\2fr years
and found secular resonances between the precession pefidearth and
Mars, 2(g4 — g3) — (s4 — s3) and between the main secular frequencies as-
sociated with the perihelia and nodes of the planets (Mgremd Jupiter,
(91 — g5) — (s1 — s2)). In this paper we extended the integration time for the
full system up tol0? years to see the variation of the fundamental frequencies
and the possible chaotic nature of our planetary system.

This paper is organized as follows: In the second sectionivesam overview
of the methods used to produce the results outlined in thpempaWe intro-
duce the reader into the windowed fourier transform (WFTlse &nown as
Gabor transform, a special topic from wavelet analysis, glmmlv the mech-
anism, how we separated the spectral lines in the correspppdwer spec-
trum. In the third section we summarize the evolution of tleenents of the
planets during 1 billion years of integration time. We prasiae maximum
and minimum values of the eccentricities and semi major atdbe main
planets of our Solar System and take a look on the evolutidheif charac-
teristic orbital elements in short. The fourth sectionadirces the frame work
of Laplace-Lagrange and defines the fundamental frequeriased on the
Laplace-Lagrangiarih, k, p,q) coordinate system. The fifth section reflects
the main results of the present work and compares them wattetfound by
Laskar and other results found in literature.

2. Methods

To calculate the motions of the eight major planets we usedralard New-
tonian model and integrated the full system of nonlineaméiqus of motions
using the Lie - integration method (HansImeier & Dvorak, 4P the Carte-
sian reference frame. Starting from present time we siradlélhe system
500 million years into the back and 500 million years into fineire and col-
lected the positions and velocities referring to the ctadsirbital elements of
all planets every 66,6 years. Thus the time span of 1 billieary resulted
in 15 million "observations" of their orbital elements l&agl to a multivari-
ate time series of 90 million data points, which leads to a0$§&©20 million
real numbers, which is necessary to represent the evolafionr Solar Sys-
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tem (eccentricitye;,, Semi major axesy, inclinationi;, argument of pericen-
ter wy, longitude of the ascending nodg, and mean anomaly/;, where
k =1 (Mercury),...,8 (Neptune)).

The initial values for the simulation were taken from the JR&t August,
1965), the effective computation time just for the inteigratvas about 1 year.
To organize and analyze the resulting data set we wrote stigdted algo-
rithms in Mathematicaand Fortran. The method used for the frequency anal-
ysis of the time series was the approximated windowed fotné@sformation
(WFT) also known as Gabor Transform and an exponential ditind opti-
mization algorithm in the power spectrum. For the analysissplit the data
set into pieces of equal length — 10 million years per unierapping with
1 million years. Thus we were able to get a time evolution ef filequency
space of the system resulting in 1000 data points in timelperent, frequency
and planet.

To cope with the known problem in Celestial Mechanics, wheimgl fre-
quency analysis of the orbital elements, namely the mixhe®veen high
and low frequencies — resulting from the chaotic structdrthe system, we
tried various filter methods to smooth the spectrum (Hanntegmming and
Blackman - Tukey windows) and compared with the respectigthods, when
smoothing in the time domain, before starting the frequeatglysis on the
whole data set. In the end we decided to use a linear filterartithe domain,
to get rid of high oscillation components. The second prolik that there are
actually no constant frequencies in the orbital elemengsdbse of the non-
linear character of the system, they are time and amplitegperdent). Thus
every method based on Fourier analysis will fail, as it wastined for signals
of infinite length and a constant frequency domain. This lemolcan be solved
using the WFT: When we split the data set into smaller piesescan regard
the elements being constant within those lag windows: Bimgua lag win-
dow, which is to small will not cover the frequency range, weiaterested in,
using a lag window, which is to big, will result in a dispersiof the frequen-
cies in the power spectrum of the signal. So it is a non triamad difficult task
to find the right tuning for the parameters (size of lag windpaverlapping
& filtering) to cope with this kind of problems. Other apprbas doing fre-
guency analysis in Celestial Mechanics were done by e.gkarg4993) and
Chapront (1995).

Our approach used in this paper was to use the WFT on the odedaope
with the time dependence of the frequencies and to refit #guéncy lines in
the power spectrum on the other hand using an exponentiajfittodel. Thus
we considered a set of lines around a peak in the power speesibelonging
to the same line and fitted an exponential curve through igt@agnore accurate
and not dispersed form of each spectral line. The resultitiggimodel was
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maximized and so we could easily improve the accuracy of gterchination
of the frequency.

The windowed fourier analysis is the simplest way to exttaath the fre-
quency and its respective time evolution of a time seriegngius insights
of the evolution of the signal in the time and frequency domaihe back-
ground or theory can be found in Wavelet analysis, where tid \8 based
on the implementation of Gabor functions. In our approachapgroximated
the method and used lag windows of equal length of 10 milliearg (150
000 data points per element and planet) and used a simpladitEFT proce-
dure to obtain the power spectrum within the window. The leygring of the
windows was 1 million years, thus leading to 1000 frequerpgcta for each
element and planet. In the next step we used a self writtdingalgorithm,
which extracted the spectra lines according to their aombéis and fitted each
spectral line within using an exponential model. We cal@dahe maxima in
the models of the first dominant 100 frequencies in each eilemred planet
and searched within for the set of fundamental frequenaesrding to a ref-
erence list given by Bretagnon (1984), Laskar (1992) and $gger (2002).
To check our results, we visualized random samples andamkexti our re-
sults to proof the correctness of the automatized identidicanethod of the
spectral lines.

3. Evolution of the Orbital Elements

The evolution of the semi major axes of the eight major pkmeer the
integration period is almost constant, which is due to thesgaonservation of
energy of every single planet, because of the smallnes®dhtfinations and
eccentricities. This is also a first indicator for the accyraf the integration
method. There are no slopes or gradients in the data set reiregdong time
scales. The semi major axes just oscillate around their aaes with small
amplitudes. Mercury, the inner most planet moves at 0.39 w&f the whole
time span, Neptune — the outer most planet stays at apprtetima0 AU.
Fig. 1 takes a closer look onto the evolution of the semi majess of Mercury
- the most influenced body in our Solar System 500 million yesgo (left
graph) vs. 500 million years in the future (right graph). Qram see, that
the evolution of the semi major axes still lies in the rangerelsent time (see
Table 1) but that there are large and chaotic variationschvseem not to
follow any periodic behaviour.

In contrast to the nearby constant semi major axis of ourgtéatihe eccen-
tricities show large variations with large periods. Thigefraises, when going
from the outer Solar to the inner Solar System and becomgedarwhen ar-
riving at the inner most planet Mercury, where the ecceitgrinay lie between
~ 0.08 and~ 0.3. In Fig. 2 one can see the coupling between the eccentric-
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Table 1. The maximum and minimum values of the orbital elements ofpdamets. The semi
major axes are given in AU, the eccentricities are numerijriclinations are given in degrees.

Planet Amaz Amin Emaz Emin Imaz Tmin

Mercury 0.3871 0.3870 0.30120 0.078730 11.40720 0.17599
Venus 0.7233 0.7234 0.07709 0.000020 4.91516 0.00246
Earth 1.00003 0.9998 0.06753 0.000083 4.49496 0.00075
Mars 1.5239 1.5235 0.13110 0.000080 8.60320 0.00291

Jupiter 5.2050 5.2012 0.06188 0.025140 2.06597 0.55867
Saturn 9.5927 9.5128 0.08959 0.007423 2.60186 0.56037
Uranus 19.3351 19.0989 0.07834 0.000095 2.73889 0.42615
Neptune  30.4325 29.9101 0.02316 0.000024 2.38176  0.77977

ities of Earth and Venus due to the 13:8 mean motion resonamdelso the
coupling between Jupiter and Saturn (due to the 5:2 mearomogsonance)
as an example for the outer planetary system: one minimaedirgt leads to
a maxima of the second and vice versa. These resonancdisttis system
over the whole integration time. The mean values and themaigind maxima
of the eccentricities can be found in Table 1.

nmercury - a [AU] mercury - a [AU]

0.387102 0.387102

0.387101 0.387101

0.3871 0.3871

0. 387099 0. 387099

0. 387098 0. 387098

0.387097 0.387097

~500 -499 -498 -497 -496 -495 -494 -493 492 491 -4 490 491 492 493 494 495 496 497 498 499 50C
to(Mr) toMr]

Figure 1.  The evolution of the semi major axes of mercuay )(500 million years ago and
500 million years in the future. Although there are chaoticiations around a constant mean

value, there is no secular trend, which indicates the stpalof the integration method (Lie -
integrator).

The inclinations of the orbits of the planets show a simikesanant be-
haviour like those found in the eccentricities. The inflientthe other planets
in contrast seems to be more dominant, than e.g. in the ewites, the max-
imum and minimum values of the inclinations of the 8 majompla can also
be found in Tab. 1, two representatives of the outer systeranus vs. Nep-
tune) are given in Fig. 3 (left graph), another two repres@res of the inner
system (Mercury vs. Mars) are given in the right graph.

Resonances in our Solar System may stabilize or destabiizesystem.
Looking to the evolution of the inner and outer planets one s the cou-
pling of the orbital elements (e and i). Although we are ndedb calculate
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Figure 2. The evolution of the eccentricities of Venus and Earth (upped Jupiter and
Saturn (lower) over the last 3 million years of the integrattime. One can see the coupling
between the planets also over the whole time span (uppeuittve with the higher amplitudes
belongs to Venus, lower:the curve with the higher amplisuoielongs to Saturn).

the real positions and velocities of all planets for longdistales, it is impor-
tant to see, that those resonances found last for long tiedlesscThe answer to
the question of stability in our Solar System thus needs @behderstanding
of the resonances in it — stabilizing, as one can see in thaliogueffect of the
planets or destabilizing, like those found by Laskar (1990)

4. Canonical Elements

The question, if our Solar System is stable or not needs nalytaal re-
sults and of course a highly accurate and precise numenvastigation of the
system. There have been several approaches to derive aettdrigher or-
der approximations for the analytical part of the solutiolisvas first studied
by Laplace in the 18th century. He found out, that the sermomafes of the
planets of our Solar System suffer only from periodic changeto first order.
Poincaré showed, that the formal series of small paramditarshe eccentric-
ities, the inclinations or the masses of the planets arearotergent due to the
problem of small divisors.
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Figure 3. The evolution of the inclinations in time of Uranus and Negwtupper) and Mer-
cury and Mars (lower) over the last 3 million years of the vehaitegration time (lower:the
curve showing a higher frequency represents Neptune, ufipecurve with the higher ampli-
tudes belongs to Mercury).

Nowadays we are able to find good analytic approximationkesolutions,
which allow us to reconstruct the shifting of the proper méeéguencies and
the combinations of them, but it is still a problem to giveddime predictions
of the evolution of our Solar System. Analytical approachesy lead to re-
sults, which are good for millions of years and with numdrieahniques one
may integrate over billion of years, like in this paper. Buthout the knowing
of the structure of the solution, the exact resonance condifor the inner and
outer planets, we will not be able to give a final answer to tlestjon, if our
Solar System can be regarded as stable or not. In this chapt@etroduce the
results of the theory of Laplace-Lagrange. We transformotiéal elements
to better ones, canonical and not singular. The benefit ibekter treatement
when doing frequency analysis in the time depending orblehents.

Using secular perturbation theory in the N-body system wiith heavy mass
in the center of gravitiy it is possible to derive the Lapladeagrange solution
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of the system, given in Laplace-Lagrange coordinéte, p, ¢) defined as:

N
hi = ) ejisin(git+ ), 1)
i—1
N
ko= ) ejicos(git + ), (2)
i=1
N
pj = Y ILisin(sit+7), 3)
i=1
N
g = Y Ijicos(sit+), (4)

i=1

which implies stability for the system for all times assugsmall values for
the eccentricities;; and for the inclinationd; ;. The conjugated variables
(hj,k;) and @, q;) respectively are the vertical and horizontal componefts o
the eccentricities and the inclinations, so called Lageabgplace coordinates
are defined via the relations:

h; = ejsin (wj 4+ ;) , kj = ejcos (w; +Q;), ®)

and
pj = sin (I;/2)sinQ;, g; = sin (I;) cos ;. (6)

Herew; are the arguments of pericenter afig are the longitudes of the
ascending nodes. The quantitigsands; refer to the fundamental frequencies,
the quantitiess; and~; are the corresponding phases in the solution of the
system. The indice&, j) refer to the bodies in the system (Mercury =1,
Neptune = 8). The advantage of using this variables is thie tlaat they are
canonical conjugated to each other and can not become aingithe orbital
elements; and/; can be easily derived via the equations:

ej:1/h§+k‘]2-, Ij:4\/p§—|-qj2-. @)

The solution of Laplace-Lagrange given here to introduecidiea of the fun-
damental frequencies used in the proceding sections, eslltasa secular and
second order perturbation theory @rand /) and neglects nonlinear effects,
which lead to chaotic phenomena in our Solar System. Lootargguations
(1) - (4) one can see that the elements are bounded and sotnealled lin-
early stable. But this is not true, when going to higher sadiapproximations
in the analytical formulas.
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5. Resulting Fundamental Frequencies

The frequency analysis in the variablgs k, p, ¢) show more or less regu-
lar periodic behaviour in the evolution of the elements fog buter planets,
complex and irregular evolution in the time series of thenaets of the inner
planets (see Fig. 4 and Fig. 5), overlapping of differengdiencies and beats
for example in Mars. The parametérandk are identical but phase-delayed,
which is the same for the canonical conjugagtesndq. In principle we will
find every fundamental frequency of the planets in the fraquespectrum of
the other planets, limited due to the fact, that the basiuieacies of the plan-
ets of the outer Solar System are more dominant in the spefcthe planets
of the inner Solar System, than vice versa and that freqaenaihich can be
found in (h, k) may be too small to be found ifp, ¢) and vice versa (note
that this effect can not be described by the Lagrange-Laptatution, given
in (1)-(6)). In fact we did the frequency analysis in all felements using the
WFT method. We searched for the fundamental frequencigifréquency
space of all four elements and planets and averaged con@isgoones in-
cluding their influence according to their amplitudes. Tedat consistency
we compared the results given by the canonical conjugatgégcamd minor
neglectible differences between them.
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Figure 4. The evolution of the time varying fundamental frequencgje®f Mercury (upper
left), g5 of Jupiter (upper right)s, of Mercury (lower left) ands2 of Venus (lower right) over
1 billion years. The samples shown correspond to the criicgle (g1 — g5) — (s1 — s2).

In Laskar (1990) two angles related to the combinations efstcular fre-
guencies associated with the perihelia and nodes of thefglane responsable
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for the positive value of the Liapunov exponent in the orded/® million
years. Another numerical integration Laskar et al. (1998)ficmed the re-
sults found in the previous paper over the time span of 6 oniliiears. The
work of Dvorak et. al (2003) has increased the integratioretup to 200 mil-
lion years. Based on an extension of this work we will imprtve accuracy
of the determination of the critical angles and may find addél ones, when
analyzing the fundamental frequency set.
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Figure 5.  The evolution of the time varying fundamental frequengjesof Earth (upper
left), g4 of Mars (upper right),s3 of Earth (lower left) ands, of Venus (lower right) over
1 billion years in arcseconds per year. The samples showesmond to the critical angle
2(gs — ga) — (3 — s4).

The evolution of the time varying fundamental frequengjesf the inner
planets over the whole time span can be found in Fig. 6 (upged) of s;
(lower). The time evolution of the respective frequenciastiie outer planets
g; and s; show no significant variations. The mean values of them dwer t
whole integration time can be found in Tab. 2 (NEW). The staiddleviation
is small regarding the evolution of the frequencies of theeoplanets, it is
larger for the inner planetary system. The table comparesedsults of this
work with an analytical work by Lagrange (LAG), a semianaigt approach
by Laskar (NGT) and the values found by Gamsjager (GAMS).

Due to the nonlinear structure of the system, the fundarhé&etguencies
which are constant in the first order approximation of Laplésee Eq.(1) -
(3)) are in reality varying with time. Some of them look likbgy are chang-
ing randomly (see Fig. 4 and Fig. 5), others look like thejolwlsecular trends
or seem to have periodic changes around their mean valugemi of them
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Figure 6. The evolution of the time varying fundamental frequencie@ipper panel) and;
(lower) of the inner planets given in arcseconds per year.

in combination - called critical angles - lead to seculagtrencies, their cor-
responding orbital elements may change from libration toutation, so that
they will cross the separatrix in the phase space - whichdinéctly lead to
chaos.

0. Conclusions

Although we were yet not able to confirm the resonant strectdirour So-
lar System, we showed that the system is stable over 1 bijlears. There
is no planet showing any slightest sign of beeing unstablee Maximum
values of the orbital elements also give no evidence, whyddrtbe planets
should escape in the next future. There exist a couple oheem®s, which
stabilize the whole system. The frequency spectrum, pdatily the time
evolution of the fundamental frequencies of the planetsshorery irregu-
lar behaviour over the whole time span, if you take a closek lon it. The
variances from the mean values are quite big — indicatingtia®tical nature
of the system. The outer bodies of the system show a moreardggihaviour in
their time-evolution of the orbital elements and fundarakfrequencies (see
Fig. 6, lower left and right panels), the inner bodies ardlyighaotic but seem
to be stabilized by the more massive outer bodies (see Figper left and
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Table 2. Fundamental Frequencies of the planets in arcseconds aeryA&G is based on the

analytical result of Lagrange (analytical), NGT is the wofl_askar (semianalytical), GAMS

presents the results of Gamsjager (numerical). Our newtseare based on windowed fre-
quency analysis with a lag size of 10 million years (1000 lagdews) and average over the
elementgh, k, p, q).

Planet LAG NGT GAMS NEW

g1 5.4615 5.5689 5.2130 5.18320.0086
g2 7.3459 7.4555 7.3343 7.35920.0124
g3 17.3307  17.3769  17.5022  17.25410.0419
ga 18.0042  17.9217 17.8921  17.81#60.0050
S1 -5.2007 -5.6043 -5.5010 -5.54670.0739
52 -6.5701 -7.0530 -6.2230 -6.89780.1528
53 -18.7455 -18.8499 -18.8574 -18.80690.02501
S4 -17.6358 -17.7614 -17.7167 -17.73630.0216
gs 3.7109 4.2489 4.2567 4.27430.00007
ge 22.2868  27.9606  28.2445  28.25230.00006
gr 2.7014 3.0695 3.0468 3.10450.0022
gs 0.6333 0.6669 0.6727 0.671#10.00003
S5 -0.0000 -0.0000 -0.0000 0.0000

S6 -25.7411 -26.3300 -26.3473 -26.32%60.00007
87 -2.9038 -2.9854 -2.9944 -2.98180.00008
S8 -0.6777 -0.6927 0.7381 -0.67100.0001

right panels). The windowed fourier transform is a good tedien analyzing
the time dependent and nonlinear time-evolution of thetakl@lements, lag
windows of 10 million years overlapping with one million ygaoduced good
results. We were not able to confirm the resonances propgdeaskar (1990)
yet, but look forward to find them and maybe additional ondsmusing the
larger integration time for the simulation of our Solar &yst
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Abstract The temporal evolution of the rotational motion along witle &attitude of a set
of irregularly shaped small planetary satellites is stddi€or this problem a
computer application was developed featuring an FFT impteation scalable
in terms of the available computer hardware optimized fet &xecution, per-
formed by reducing the amount of mass-storage operatiotisthe aid of an
adaptive multi-buffer cache strategy. Every satellite deiled as a homoge-
nous triaxial ellipsoid precessing under the torque of tlaénnbody. For a set
of eight satellites the evolution of their spin-angularogiy vectors is numeri-
cally tracked using non-singular matrix differential etioas. Calculations were
carried out with at'" order Runge-Kutta algorithm using a grid of 1620 differ-
ent initial conditions for the attitudes of the satellitedn FFT was applied to
the results to observe, whether the spin axis tumbles atadigtin conjunction
with chaotic rotation, or if the obliquity and the spin argubelocity remains
constant or changes periodically for certain initial cdiodis. It is shown that
for each satellite investigated a regular rotation is gmedbr spin axes with an
obliquity near zero degrees. Other stable regions exigtdoh satellite as well.
For Proteus, a satellite of Neptune, the stable region ismmlly extended of
all objects investigated.

Keywords:  Satellites — Rotation — Stability

1. Introduction

The investigation of the temporal evolution of the spinsagénatural satel-
lites has a long history in celestial mechanics (see [14], [[14], [13], [6],
[3], [7], [8]). The stability of the attitude of the rotaticaxes and the existence
of resonant spin states is of special interest. All the almgationed investi-
gations have in common that a spin axis perpendicular torthigabplane was

a7
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assumed. Thus only a small region in the phase space wasigated or the
calculations were only carried out for one satellite.

Due to tidal forces rotational evolution tends to erect ghie sixis until it is
perpendicular to the orbital plane of the satellite. For s@atellites these spin
states however are not stable, e.g. for Hyperion. This behaan only be
found if a satellite is non-spherical, hence small in sizenunerical analysis
of the stability of the attitude and the spin period of smiategularly shaped
natural satellites with an obliquity between 0 and 45 degweith an unknown
rotation state is presented in this work.

This analysis was performed with the aid of computer programitten in
C# and Mathematica. This extensive program package cangoefaisfurther
research tasks.

2. Theory

Many satellites’ highly aspherical shapes can roughly tscdbed as ellip-
soidals. For the orientation of a satellite with respechorhain body two sets
of coordinates are necessary; a reference frame and a ledg.fiThe origins
of both sets are situated in the satellites’ center of maseryEvector in the
reference frame can be expressed in terms of the body frathetive aid of
3 right-hand rotations (through 3 Eulerian angles) arousdcaence of (prin-
cipal) body axes [4], [12]. Every rotation can be describgdal8x3 matrix
with time-dependent elements. Consequently differemplations with the
Eulerian angles as variables, describing the time devetopiof the spin axis,
are developed.

A body fixed coordinate system is given as follows. Let threetors, @, b
and ¢ define a right-hand set of axes fixed to the satellite whichespond to
the principal moments of inertid < B < C.

z
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The reference coordinate system is given as follows. Theedral

(7, W, Z)is defined as:

axis parallel to the planet-to-satellite vector,

axis parallel to the orbital velocity,

N
X
-
Y
7 axis normal to the orbit of the satellite.

Starting with this reference system the trihedral sys(em D, ?) is ob-

tained through the rotation along the Eulerian anglest, ¢):
At first the body axes are rotated around tHeaxis along an angle, then

around the newr” axis (denoted by7 ) along an anglé and finally around the
new 7 axis (denoted byc’) along an angle.

X

ST, Y i N
The axesz’, iy are rotated along the Eulerian angleo give z’, /.
For the direction cosines\, p, v) [6] one obtains:

A = cos(p)cos (1) —sin (¢) cos (0) sin () ,
p = —cos(p)sin (1) —sin () cos (0) cos (¢) (1)
v = sin(0)sin(p).
With the componentéw,, w;, w.) of the angular velocity vector referenced
to the axes(?, 7, ?) the Eulerian equations can be written as [2]:

dw, 3-M-G
dwy 3-M-G
dw, 3-M-G
C' dt—(A—B)waCUb = —T(A—B)A/,L
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The equations in terms of the Eulerian angles experiencegalsirity how-
ever, when the spin axis is perpendicular to the orbitalg[ah

To circumvene this problem the attitude of the satellitehwespect to its
main body can be described as follows.

An initial coordinate systeniz’, 3/, ') is given in such a way that the
axis is pointing from the main body to the perihelion of théeiges’ orbit.
The z axis is perpendicular to ther, y) plane originating in the center of the
main body.

Let the principal moments of inertia tel, B, C). Three axig @, s

parallel to these principal moments can be used to descadberdinate system
fixed to the satellite (body fixed coordinate system).

E;; are the cosines of the angle between #fiebody fixed axis ¢, b, or ¢)
and thej*" initial axis (z, y, or z). The nineF;;s represent a 3x3 rotation
matrix £. With the aid of this matrix, every vector in the initial frentan
be transformed to the corresponding vector in the body fixatdting) frame.
Because of the orthogonality df, the transposed matrix® describes the
inverse transformation.

Let I be the torque and |’ be the angular velocity vector of the satellite
in the inertial frame.

Furthermore let’ = w)g—; with f denoting the true anomaly. One can define

L = FE | astorque a_n)cﬂ iEw as the spin angular velocity vector in the
body fixed frame, thu& = Q &£ = E7.
The components of the torque in the body fixed coordinateesysire:

Ly = AQa, 3)

Lp = BQpg, 4)
Le = CQc. (5)
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This leads to the following form of the Eulerian equationk [5

d _ YA2esin(f)
d_sz N 1—|—ecos(f)_aZBEC+
3a (Eoy cos (f) + Eagsin (f)) (Esycos (f) + Esasin(f))
1+ecos(f) '
d _ X¥p2esin(f)
d—fEB = 71+ecos(f)+ﬁz’420_ (6)
3ﬁ (Ell COS (f) + E12 sin (f)) (E31 COS (f) + E32 sin (f))
1+ecos(f) ’
d ~ Yc2esin(f)
d_sz N 14—ecos(f)_IYEAEB+
3y (E11cos (f) + Erasin (f)) (Eoy cos (f) + Eagsin (f))
1+ecos(f) )

With the following equations, one can describe the tempevalution of the
spin axis of a satellite with the aid of direction cosines:

%En = Ycoko — XpFEsi,
iEzl = YaFb3 —YcEn
df ’
i]5'31 = YpEn —XaFEy
df ’
iE12 = YcoFEy» —XpE3
df ’
diEm = XYuFE3 —YcEn, (7)
/
i]5'32 = YpE1s —YaFE»
df ’
iEm = XYoklEo3 — XpFEs3
df ’
iE23 = YpFEs33—YcEs
df ’
iE33 = YpFE13 — Y aFEss.
df
3. Numerical investigation

A computer program in C# was developed to numerically irgegthe equa-
tions of motion. For this purpose #" order Runge-Kutta [9] with variable
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step-size was used. The results were analyzed by cal@iafiequency spec-
trum using an optimized Fast Fourier (FFT) algorithm impbeted by one
of the authors of this treatise (T. Loeger). This implemgatacontains an
intelligent multi-buffer cache strategy to reduce Hard#Obperations.

To visualize the results, the program was designed to cidatbematica
notebooks with dynamically structured plot-expressighspecially designed
notebook is used to read all these notebooks and execute Kfeanthe paths
to the output-files of the C# program are properly set, thigelaok reads
all the files and creates the plots showing the results ofritegyiation. The
formulae used by the application were set up by Mathematica.

It is sufficient to describe the initial attitude of a satellin terms of two
angles as initial conditions rather than using the elemefritse rotation matrix
E.

The angle« is varied between 0 and 180 degrees in steps of 5 degfees,
is varied between 0 and 45 degrees in steps of 1 degrees. Tdrenotation
period expressed in terms of the true anomaly (correspgridinormalization)
was selected as the z-element of the spin angular veloaitpre

The variation of the spin axis attitude and the evolutionhaf $pin angular
velocity vector were calculated for 1620 initial conditoowith a4 order
Rung-Kutta algorithm.

An FFT was applied to the results obtained above. For eadflisatand
initial condition, a histogram over all the frequenciesaibed in the Fourier-
spectra was calculated. Histograms were used to distimghés frequencies
indicating resonant spin states and “noise”-frequencies.

For each satellite a plot for all initial conditions was deshshowing the
values of the remaining frequency-peaks found for eachairgbndition (see
Fig. 1 —Fig. 8).

4., Results

The frequency-values in terms of the orbital period werey-g@ded as
shown in Fig. 1 — Fig. 8. Left to each figure values markers efabrrespond-
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ing frequencies are displayed. Due to the fact, that theureqy correspond-
ing to a certain gray-code differs for each satellite, thesge plots cannot be
directly compared, with the exception that black regiom&gk indicate initial
conditions for which the satellite’s rotation state becerokaotic. Each point
in the plot corresponds to the result of one initial conditior « and3, where
alpha is the azimuthal and beta the polar angle describmitial attitude of
the satellite (the initial conditions for the subsequertggnation).

4.1 Satellites of Jupiter
4.1.1 Adrastea.

Physical and orbital characteristics

Period of revolution [days] 0.29826
Eccentricity 0.0018
Mass of main body (Jupiter) [kg] 1.899 - 10%7
Mass of satellite [kg] 1.91-10'
Diameter [km] 25 x 20 x 15

P —

40

al]

0 50 100 150 30 ‘

20

Frequency
4

0 25 50 75 100 125 150 175

Figure 1. A plot showing the gray-coded values of the frequency-pdaiaad for all initial
conditions ¢,3) for Adrastea.

As one can see in Fig. 1 the eccentricity e is relatively |degading to a large
chaotic region for values of the azimuthal angl®etween 10 and 20 degrees
and the polar anglg between 0 and 30 degrees (black regions in the right plot
of Fig. 1). Small regions of initial conditions leading toaddtic rotation can
be found for alpha between 150 and 180 degrees and beta Ipet®ead 20
degrees and beta between 35 and 40 degrees. In the regiotiabtionditions
leading to regular rotation states, one observes resos&eteeen 2:1 and 3:1
for alpha between 50 and 180 degrees and beta between 0 aedr2@sland
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an approximate 1:1 resonance for alpha between 0 and 188eafegnd beta
between 32 and 45 degrees.

4.2 Satellites of Saturn

4.2.1 Atlas.
Physical and orbital characteristics
Period of revolution [days] 0.6019
Eccentricity 0
Mass of main body (Saturn) [kg] 5.6846 - 10%°
Mass of satellite [kg] 1.91-10'
Diameter [km] 18.5 x 17.2 x 13.5
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Figure 2. A plot showing the gray-coded values of the frequency-pdalad for all initial
conditions ¢,(3) for Atlas.

The eccentricity e is zero, leading only to non-chaotic segias one can
observe in Fig. 2. One can find initial conditions leadingesanances between
1:1 and 2:1 for values of alpha between 0 and 80 degrees aadémteen 0
and 15 degrees and 1:2 resonances for alpha between 0 andréeslend
beta between 20 and 45 degrees.

4.2.2 Prometheus.

Physical and orbital characteristics

Period of revolution [days] 0.61299
Eccentricity 0.0024
Mass of main body (Saturn) [kg] 5.6846 - 10%°
Mass of satellite [kg] 3.3- 10"

Diameter [km] 145 x 85 x 65
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Figure 3. A plot showing the gray-coded values of the frequency-pdaiaad for all initial
conditions ¢,3) for Prometheus.

The eccentricity e is relatively small, leading to small atia regions for
values of alpha between 110 and 120 degrees and for valueseohtound 10
degrees, around values of alpha 70 degrees and 150 degrées)@es of beta
between 35 and 45 degrees (shown black in Fig. 3). One carefigel tegions
of initial conditions leading to 1:1 and 1:3 resonances fidral conditions for
alpha between 0 and 180 degrees and for beta between 0 andre@sleand
further for alpha between 0 and 50 degrees and beta betweeh4balegrees.

423 Pandora.

Physical and orbital characteristics

Period of revolution [days] 0.628
Eccentricity 0.0042

Mass of main body (Saturn) [kg] 5.6846 - 10%°
Mass of satellite [kg] 1.94 - 107
Diameter [km] 114 x 84 x 62

The eccentricity e is relatively large, leading to a largeatft region for
initial conditions for alpha between 0 and 10 degrees aral lbetiveen 20 and
30 degrees, and a small region for initial conditions fohalpf 100 and 130
degrees and values of beta for 25 and 40 degrees (black sdagiéing. 4). One
can find initial conditions leading to resonances betwe&rafhd 2:1 for initial
conditions of alpha between 50 and 180 degrees and betadretivend 15
degrees.
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Figure 4. A plot showing the gray-coded values of the frequency-pdalad for all initial
conditions ¢,/3) for Pandora.

4.2.4 Telesto.

Physical and orbital characteristics

Period of revolution [days] 1.8878
Eccentricity 0

Mass of main body (Saturn) [kg] 5.6846 - 1026
Diameter [km] 34 x 28 x 26
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Figure 5. A plot showing the gray-coded values of the frequency-pdalad for all initial
conditions ¢,3) for Telesto.

Even if Telesto’s eccentricity is zero, one can recognizeymaitial condi-
tions leading to chaotic rotation, because Telesto is figkpherical. These
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regions can be found for alpha around 10, 100 and 180 degnee®minitial
conditions for beta between 10 and 30 degrees, at O degrdex 8Q degrees
(black regions in Fig. 5). A distinct region leading to a 1&sonance can
be observed in the diagrams of Fig. 5 for values of alpha batva® and 40
degrees and beta between 0 and 40 degrees.

425 Calypso.

Physical and orbital characteristics

Period of revolution [days] 1.8878
Eccentricity 0

Mass of main body (Saturn) [kg] 5.6846 - 10%°
Diameter [km] 34 x 22 x 22

Frequency

40
30
20
0 25 50

Figure 6. A plot showing the gray-coded values of the frequency-pdaiaad for all initial
conditions ¢,3) for Calypso.

75 100 125 150 175
all

Considering the very small eccentricity of Calypso, onlynaa#i chaotic
region can be observed. This region can be found for inidabiitions of alpha
around 10 degrees and for beta around 35 degrees (blacksegid-ig. 6).
There is a large region of initial conditions leading to ai@&4onance for alpha
between 70 and 180 degrees and beta between 5 and 45 degtee®gion of
initial conditions leading to 1:1 resonances for alpha leetw0 and 70 degrees
and beta between 0 and 40 degrees.

4.2.6 Helene.

Physical and orbital characteristics

Period of revolution [days] 2.7369
Eccentricity 0.0022
Mass of main body (Saturn) [kg] 5.6846 - 10%°
Diameter [km] 34 x 22 x 22
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Figure 7. A plot showing the gray-coded values of the frequency-pdalad for all initial
conditions ¢,3) for Helene.

Even though the eccentricity of this satellite is small, sachaotic regions
are visible, more precisely at alpha around 10 degrees, e, 170 de-
grees and 180 degrees and beta around 20, 30 and 40 degestsrégions
in Fig. 7). There is a large region of initial conditions leagito resonances
between 1:2 and 1:4 at alpha between 20 and 180 degrees anebsten 0
and 20 degrees, and a region leading to a 1:1 resonance fa bgiween 0
and 180 degrees and beta greater than 25 degrees.

4.3 Satellites of Neptune
4.3.1 Proteus.

Physical and orbital characteristics

Period of revolution [days] 1.122
Eccentricity 0.0022

Mass of main body (Neptune) [kg] 1.0243 - 10%°
Mass of satellite [kg] 5-10"°
Diameter [km] 440 x 416 x 404

Proteus is nearly spherical, but its orbit shows a smallmdcdy, so there
are some regions leading to chaotic rotation for initialditans for alpha of
10 and 140 degrees and for beta at 15 and 40 degrees (blacksédgithe
right plot above). A large region leading to a synchronouation state (1:1
resonance) can be observed for alpha between 0 and 180 slegrdebeta
between 0 and 15, respectively 45 degrees, as well as a riegidimg to a 3:1
resonance for alpha between 100 and 180 degrees and betehet@ and 40
degrees.
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Figure 8. A plot showing the gray coded values of the frequency-pealsad for all initial
conditions ¢,3) for Proteus.
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Abstract In this study we show the results of a numerical determinatithe stability of
planets in exchange orbits. These kinds of orbits are definel that two small
but massive bodies with almost the same semimajor axes oly ngaular orbits
are moving around a much more massive host. Because the platiee inner
orbit is faster it approaches the outer body from behind.oBethey meet, the
inner body is shifted to the orbit of the outer and vice-vettsa former outer
body moves to an orbit with a smaller semimajor axis. We didrumerical
experiments for different masses of the two planets invbbsed different initial
separation of the semimajor axis. It turned out that forlstakchange orbits the
sum of the mass of the two planets can only slightly exceedmigeof Saturn.

Keywords:  Extrasolar planetary systems, terrestrial planets, exgdarbits

1. Introduction

The search for extrasolar planets led up to now to the knayelemf 185
planets in 149 extrasolar planetary systems (EP8)most all these planets
are giants with a few exceptions; the planet with the loweassfound has
5.5 masses of the Earth. One primary goal of searching for IER& find
terrestrial planets in so-called habitable zones (HZ)]j[10here are different
possibilities for terrestrial planets (TP) to move on stabibits even when a
large planet is present: when the giant is outside the HZ a &Pmove inside
(like in our Solar System), when a hot Jupiter is moving climsthe host star
a TP may move on a stable orbit in the HZ. A lot of effort has beetertaken
to define such stability zones in existing EPS (e.g. [1], 3], [6], [12], [11],
[13], [14], [16], [18], [19], [20], [21]). Additionally we an imagine TPs as
satellites of giant planets and also in 1:1 mean motion @swes (MMR) with
a Jupiter like planet.

63
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These 1:1 resonant orbits are of special interest for adgein our Solar
System. It is due to the fact that in a regiédf before Jupiter and0° behind
the largest planet a large number of asteroids are popglttis region. Many
analytical and numerical work has been devoted to the gtabil these two
‘clouds’ of asteroids, which are named after the warriorshef Trojan war.
The Trojans librate about these two stable equilibrium {gdim the so-called
tadpole orbits having orbits with two well distinct perio@most 12 years and
149.6 years) which are visible in Fig. 1 (upper graph).

When the libration around the one Lagangian point grows aadhes a
point which is opposite to the location of Jupiter with regpe the Sun the
orbits merge with the orbits around the other equilibriunmpor hese kind of
orbits — because of their appearance in a rotating frame inhadupiter and
the Lagrangian points have fixed positions — are called Bbmse orbits (see
Fig. 1, lower panel)

In the case of an asteroid and Jupiter in the 1:1 resonance iheot any
'measurable’ effect on Jupiters orbit, because of the srasdl of the mass of
the asteroid compared to the one of Jupiter. The situatiquiie different
when the two celestial bodies involved have comparable @sassd are both
small compared to the central mass. Surprisingly enougles@ars ago two
satellites in the Saturn system were discovered which heaetlg these kind
of orbits which we call novexchange orbitsThe exchange orbits (e-orbits) of
the general three body problem can be described as follows:

Two small but massive bodies are moving on nearly circul&itsmwith al-
most the same semimajor axes around a much more massive Bestuse
of the3"¢ Keplerian law the one with the inner orbit is faster and apmbes
the outer body from behind. Before they meet, the inner bodiifted to the
orbit of the outer and vice-versa the former outer body mawes orbit with
a smaller semimajor axis: they have changed their orbits thiedt semimajor
axis!

This interesting interplay may be stable for millions of eugters as we
will see in the next chapters. In the satellite system of ®atfoe two moons
Janus and Epimetheus (the orbits of these two moons diffgriyns0 kn?
and have themselves diameters of more than 100 km) haveyettaete kinds
of orbits; so we postulate that this may apply to extrasolangis too. Early
work concerning exchange orbits was accomplished by [22] ddscribed the
u-shaped orbits during the close encounter (in a rotatimgé!) and also [2]
who established stability regions depending on the massetved. Recent
numerical integrations and analytical estimations shat ¢horbits are stable
up to a mass ratio where a TP is in exchange with a Saturn léeepl(e.qg.
[14]).
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Figure 1.  Orbit in the restricted three-body problem around the Lagian points in the
rotating frame: around. s (upper graph), aroundls and around both equilibrium points (lower
graph). Note that the last orbit is in an exchange orbit irftiiehree body problem; for detailed
explanation see in the text.
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Another study by [7] was devoted to the problem of the dynarofcsystems
of two close planets which is in a certain sense similar toptablem we
are dealing with. But in contrary to exchange orbits thersthdied stability
against close encounters which may led to escapes whendhey as close as
the Hill’'s radiug'. [13], [14] studied the different possibilities for two plets
in 1:1 resonance and how they would be detectable with thefaltkir radial
velocity curves. [17] have shown that two planets in 1:1 MM#R e stable
for quite different orbital parameters. In a recent papérsf®wed that two
ESP with planets in a possible 2:1 MMR could also be in the 1MRWith
more or less the same Radial Velocity Curve.

2. The stability limits

To establish stability regions depending on the paramethish determine
the exchange orbits (mass ratio of the planets and total ofasge planets
compared to the central body and difference in semimajas Axi) we did
numerical integrations of the equations of motion of thé 3dbody problem.
We used the Lie-integration (e.g. [9], [15]) with an adaptstep-size to be
able to model in a proper way the encounters of the two plan#fs always
started the two planets on circular orbits on both sides efcéntral star in
1 AU with an increasing value of the difference in semimajresaAa for
every single experiment. We checked the maximum eccemtritiring the
integration time of 10000 years; we emphasize that the nuwfbencounters
depend oa.

In Fig. 2 we can see the limits of stability for e-orbits whéne equally
massive TPs are involved. We plotted these differenkessersus the max-
imum of the eccentricity . There it is visible (upper graphaded region in
Fig. 2) that up to the distanc&a = 0.02 AU (a = 1.01 AU for the outer and
a = 0.99 AU for the inner planet) the eccentricity stays very small; gans
that the orbits were stable even after thousands of enasuniéen we see
large maximum eccentricities between 0.96 AU and 0.99 AOD1(JAU and
10.4 AU) which are the sign that after an encounter the ptahnad quite dif-
ferent orbits and left the exchange orbits. Then they arenagable because
they are too far from each other and may pass without majourations (the
eccentricities are again small). The small hills’ on boithes are due to high
order resonances which cause slightly larger perturbstibuat the two orbits
are well separated and almost circular. We have undertdiese thumerical
experiments for four different pairs of planets with equalsses are the fol-
lowing ones: Earth — Earth, S-Earth — S-Eaytdranus — Uranus and Saturn —
Saturn.

In Fig. 3 we depicted a zoom of the results shown in Fig. 2. litezan be
seen that for large masses involved the differences in sejoinaxis can be
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larger and the e-orbits are still stable: the respectivalte$or two equally
massive planets in exchange orbits with a mean semimajsniaxil AU are
shown in Table 1.

Table 1. The extension of the stable regions for exchange orbitsiorequally massive plan-
ets around a Sun-like star with a small differerdse in semimajor axes

2 planets lower limit  upper limit Aa
Earth — Earth 0.994 AU 1.006 AU  0.012 AU
S-Earth— S-Earth  0.990 AU 1.010AU  0.020 AU
Uranus — Uranus 0.988 AU 1.012 AU 0.024 AU
Saturn — Saturn 0.982 AU 1.018 AU 0.036 AU
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Figure 2.  Stable regions for exchange orbits for 4 examples of two lggusassive TPs:
Earth, Super-Earth, Uranus, Saturn; the initial semimapas of the two planets is plotted
versus the maximum eccentricity.

In Fig. 4 we plotted the stability regions for three differgrairs of planets
in e-orbits: upper graph the Earth (as inner planet for trginéng of the
integration) with S-Earth (as outer planet for the begigronthe integration);
middle graph the Earth with Uranus and lower graph the Earth $aturn.
The largeenmax values (y-axis on left part of the plot) are the ones of thelEar
the smaller ones (y-axis on right part of the plot) are ¢hgx values for the
more massive planet. The region in the middle, withx close to zero, is the
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Figure 3. Zoom of Fig. 2 but for logscale in y.

domain of stable e-orbits. One can also see that the largeotal mass, the
larger is the stable region, a fact which is also visible freh. 1.

In Fig. 5 we show the results of numerical integrations offedént pairs of
planets in e-orbits: S-Earth with Uranus (upper graph);as#Ewith Saturn
(middle graph) and as Uranus with Saturn. The trend is theesasralready
shown in the last figures: the stable region increases watinhsses involved.
Nevertheless there is a limit for the total mass of the pkEntte numerical
experiments for e-orbits have shown that approximately ir8masses are
this limit (which also agrees with the analytical model bj) [3

In Fig. 6 we show for three examples of equally massive ptahetv the
semimjaor axes evolves during 2000 years. We can see aflyuttéke dia-
gramm: the 2 planets start on opposite sides of the planeté 180°) with a
small difference in semimajor axeA§). During the integration the two plan-
ets approachAa increases and just before their encouner has its largest
value. Now the two planets change their orbits: the inner aiéch is moving
faster, is shifted outwards and the outer one is shifted amde/and therefore it
is on a 'faster track’. Consequently now this planet appneache other planet
from the inside; when they are on the opposite sides of thestastheAa is
again as small as at the beginning of the integration andriteedure repeats.
The upper graph is for an Earth-Earth pair, the middle graphStEarth —
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Figure 4.  Stable regions for exchange orbits for 3 examples of paifdasfets: in all three

examples the inner planet is the Earth; the outer planet iskargh (upper graph), Uranus
(middle graph) and Saturn (lower graph). The initial senjanaxis of the planets is plotted
versus the maximum eccentricity of their orbits.

S-Earth and the lower graph for Uranus — Uranus. The encotnetguency
depends on the separation of the semimajor dxes

In Fig. 7 we depicted the change of the semimajor axes afteryesose
encounter of a pair of Earth and Saturn. It is clearly visithiat the Earth
suffers from bigger jumps in semimajor axis during the emteuthan Saturn,
a consequence of the smaller mass of the Earth.

An important point is the long-term stability of such orbits this a transit
configuration, or, can these kind of orbits survive for mifls of encounters?
To answer this question severeal tests were undertaken@odwld show that
these kind of orbits are very stable. In the respective Fige&8depicted the
semimajor axes for the first million years and for the timeimal from 9 to
10 million years; in Fig. 9 we show the development of the atisty for
the same periods of time. The results of two Earth-like plamath an initial
Aa = 0.08 show the regularity of the orbits even after almost ten thads of
encounters (exchanges).
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3. Conclusions

The search for terrestrial planets in EPSs is a hot topic fsewing as-
tronomers nowadays. To establish regions where stablesabi Ps in extra-
solar planetary systems may survive is a challenge forrastnoers working
in Astrodynamics. Besides inside or outside the orbit ofangplanety one
possibility for TPs is to move in 1:1 MMR like Trojans and gkites of Jupiter-
like planets. Numerical estimations led to the conclusthwmt for a Solar type
host star the mass limit for exchange orbits in the distarice AU (thought
as the habitable zone) is just below two Satum8003Msyn). These means
that even a Saturn like giant may exchange orbits with anhHiée planet;
unfortunately most of the gasplanets discovered up to newrathe size of
Jupiter or even larger. Nevertheless we expect for playetigstems to host
also Neptune and Uranus like planets — and also smallertglam@mely the
terrestrial ones — and consequently we cannot exclude #tisaton for plan-
ets in this type of orbit. Although it seems to be a very urllikeonfiguration
the fact, that Janus and Epimetheus in the Saturn sateltera have such
orbits, teaches us that the probability of a realisationlahgts in e-orbits is
not zero. To summarize we can see that e-orbits are possibldar almost
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Two planets in e-orbits for 10 Million years
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Figure 6. Time development of semimajor axis for 200 years of 3 diffiefgirs of planets:
Erath — Earth (upper graph), S-Earth — S-Earth (middle grapl Uranus — Uranus (lower

graph).
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Two earth-like planets in e-orbits for 10 Million years
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Figure 8. Semimajor axes of the exchange orbits for 10 million yeappen graph: first
million years, lower graph last 1 million years.

circular orbits ¢ < 0.001) and almost coplanar orbits. These limits for ec-
centricity and inclination depend on the mass and also osaperation of the
two planets involved: a numerical results (which fit well twalytical estima-
tions) give for the values of the separation in semimajos axi in a distance
of 1 AU to a sunlike planet: 0.012 AU (Earth), 0.020 AU (S-B3r10.024 AU
(Uranus) and 0.034 AU (just below Saturn). In a next step wkinviestigate
how perturbations of an inner or outer perturbing gas gicey destroy these
limits.
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Notes

1. The homepage for the catalogue of extrasolar planetsiigarsed by J. Schneider:
http://vo.obspm.fr/exoplanetes/encyclo/catalog.php
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2.

named after Joseph Louis, comte de Lagrange (GiuseppevicodLagrangia, 1736, Turin - 1813,

Paris)

3.

151472 km and 151422 km

4. r = apane(m/3M)/3; M the larger mass and m the smaller one

5.

With S-Earth we mean a TP with the maas.garth= 5mEarth
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Abstract The main goal of this study is to investigate the long ternbiitg of orbits of
terrestrial like planets in the habitable zone (HZ) of th&r&solar systems 55
Cnc andv And. The habitable zone is defined as the region, where ligpaid
ter can exist on the surface of a terrestrial planet. Frondyimamical point of
view the most interesting planetary systems are multiph@gtlary systems, to
which the two planetary systems belong, since they haveast tleree known ex-
oplanets. To determine the orbital behavior in the diffesytstems we used (a)
direct numerical computations (Lie-Integration methodere we determined
the escape-times and the maximum eccentricity (MEM) antb(tihe long term
stability the FLI, which is an effective chaos indicator.ddase of the uncertain-
ties in the observational data for the initial conditionswaeied the eccentricity
of the known planets as well as the inclination of the teatipts. For the system
55 Cnc we found a very stable HZ more or less independent aé¢bentricity
of 55 Cnc d and up to an eccentricity of 0.38 of 55 Cnc c. For digitcentric-
ities of 55 Cnc ¢ the whole system becomes unstable. Themnsystend has a
nearly completely unstable HZ for all initial conditions.

Keywords:  dynamical Astronomy, multiple exoplanetary systems, tiadibe zone

1. Introduction

In 1995 the first extrasolar planet was discovered [21] artd now (May
2006) we know 188 planets in 152 extrasolar systems. Thetigetion of the
dynamical stability of extrasolar planetary systems isanoteresting in multi-
ple planetary systems. Beside some general studies forsygtdms (e.g. [3])
many exosolar planetary systems, lik€ephei [5], HD 12661, HD 38529, HD
37124 and HD 160691 [8], HD 74156 [6] and GI 777 A, HD 72659, G4 6
47 Uma and HD 4208 [1] were investigated. Furthermore amsite study
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including 97 exosolar systems and their resonances waskgof#4]. These
investigations determined on the one hand the stabilititdimand checked on
the other hand the orbital parameters obtained by obsensaf[13], [14]). In
our study we investigate two multiple exoplanetary systeiitis three planets:
55 Cnc andy And, which are both located in wide binary systems.

Sincev And was the first system with three known planets there exist af
studies, which checked the observational data as well ast#ifdity of this
system (e.g. [22], [15], [11], [2], [17]). For example [25)c[26] calculated
additional some fictive planets to find out, if there are sotable regions for
other lower-mass planets. Other works showed, that theetdanand d inhabit
a secular resonance. [18] found, that the systeAnd has a stellar compan-
ion, approximately 750 AU away ([18]).

55 Cancri is part of a wide binary system and the planets wispodkered by
the California & Carnegie Planet Search Team [19]. The iriner planets
were found to move in a 3:1 mean motion resonance, which vuakest in
detail e.g. by [27], [10], [4] and [20]. Recently (August,d) a fourth planet
was detected, which moves very close to the primary (0.03B&dd has just
14.21+2 2.91 Earth-masses ([23]), which was not included in our agap
tions (The planet has no influence on the HZ, since it moveg dlese to the
star). In our study we concentrate on the HZ (see [12]) indle® systems
and try to find out if there could exist any additional planeitin. In the
following we introduce the dynamical model and the methodk which dy-
namical stability was established: (a) long-term numéridagrations and (b)
chaos-indicators. Finally we discuss the results for bgsitesns.

2. The dynamical model and the methods

The orbital parameters for both investigated systems amngh Table 1.
These systems were investigated numerically using twergifit models. In

Table 1. Orbital parameters for the 55 Cnc and th&nd extrasolar planetary systems.

Name M Spectraltype o [AU] e w [9]
55 Cnc 0.95M G8V - - -
Star 2 3.2M¢ A0 1150 ? -
55Cncb 0.84M jup - 0.115  0.02 99
55Cncc 0.2IM jup - 0.24 0.34 61
55Cncd 4.05M jup - 5.9 0.16 201
v Andromedae 1.3/1; F8Vv - - -
Star 2 0.2M¢ M4,5V 750 ? -
v Andromedae b 0.691;., - 0.059 0.012 73
v Andromedae ¢ 1.897 ., - 0.829 0.28 250

v Andromedae d  3.7B1;.p - 2.53 0.27 260
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both cases we use the restricted 6-body problem (for thitystie ignore the
recently new discovered planet in the 55 Cnc system, becasisealculations
showed, that it has no influence on the HZ) consisting of tharyj the three
planets and massless test-planets, that move either imihe glane or on in-
clined orbits. Because of the observational uncertaintigbe eccentricities

of the planets we varied the eccentricities of those plametsch are next to
the HZ. Since the eccentricity of the binary is not known ardduse of the
large distance of the stellar companions (see table 1) wesiigated only an
extreme caseep;, = 0.9 to see, if there is any dependence at all. The in-
tegration of the Newtonian equations of motion was underiakith the Lie
integration method [9], [16], which uses an automatic stiep-and is, because
of the recurrence of the Lie-terms, a precise integratiothote The inte-
gration time wasl0® years and our stability criterion was such that no close
encounters within the Hill's sphere of one of the massivagiawere allowed.
As a second independent tool to investigate the region feetwe two known
planets we used the Fast Lyapunov Indicators (FLI) [7]. Paggram uses the
Bulirsch Stoer integration method and is especially adhfedistinguishing
between chaotic and regular orbits. The criterion for théskd given by their
time evolution, which defines clearly the orbital behaviolmr our study we
define orbits with FLI< 10° as stable; the integration time was 50000 years
for the FLI's. Both methods were used complementary and sbdoavquite
good agreement.

3. 55 Cnc

For a primary-mass of 0.95/;, the HZ lies approximately between 0.5 and
1.4 AU [12]. In Fig. 1 the orbits of all three known planets ah®wn as black
circles and the HZ is marked as a grey circle. As one can seen6% @oves
far away from the HZ, but 55 Cnc ¢ moves very close to the indgeef the
HZ as well as very close to 55 Cnc b; thus the mean motion resesavith
55 Cnc c could play an important role. Additionally we foungt,othat 55
Cnc c itself become unstable for higher eccentricitiesabse then it has close
encounters with 55 Cnc b. The HZ lies between 55 Cnc ¢ and 55dCiizis
we change the eccentricities for these two planets as felldle eccentricity
given from the observationg ) for 55 Cnc c is 0.34 and for 55 Cnc d 0.16,
so we changed the eccentricity of 55 Cnc ¢ between 0.14 art\iith a
step of 0.1 and the eccentricity of 55 Cnc d between 0.06 &3&idgain with
a step of 0.1. All these calculations were additional dorreiriolined test-
planets (for inclinations from Oto 50° with a step of 8). The results for
eops @re shown in Fig. 2. As one can see, the region of the HZ is yearl
completely stable with very low eccentricities, just foghiinclinations an
unstable region near the outer edge of the HZ occurs. The gdge of the
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Figure 1.  Heliocentric orbit for the planets in the system 55 Cnc (blaitcles); the grey
region mark the HZ in this system.
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Figure 2.  Maximum eccentricity plot for the system 55 Cnc witks cncc = 0.34 and
esscned = 0.16. Dark regions show low eccentricities (stable motion) amel grey scales
go to higher eccentricities (unstable motion, see colorerodAdditionally one can see the
19 : 5 = 0.5844 and the5 : 1 = 0.7018 mean motion resonances with 55 Cnc c.

HZ shows also a small unstable strip, which indicates thaenite of the inner
planet (55 Cnc c), as well as some mean motion resonance85vEimc c. For
lower eccentricities than the observed one, the HZ remaémg stable and
also a higher eccentricity of 55 Cnc d has no considerablyénfte on the HZ
(see Fig. 3). For higher eccentricities of 55 Cnc ¢ the whg#tesn becomes
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unstable. Fig. 4 (upper) shows the orbits of 55 Cnc b and 55%@nthe case of
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Figure 3.  Maximum eccentricity plot for the system 55 Cnc witkscncc = 0.34 and
esscncd = 0.36. Dark regions show low eccentricities (stable motion) amel grey scales
go to higher eccentricities (unstable motion).

ess cne b= 0.02 andess cnc = 0.42. As one can see, the high eccentric orbit
of 55 Cnc ¢ comes already very close to the orbit of 55 Cnc b¢hvlgads to
close encounters with this planet (see Fig. 4, lower), scatter approximately
6000 years 55 Cnc ¢ becomes completely unstable as it carebdrsen the
time evolution of the semi-major axis of 55 Cnc b and 55 Cnadg. &, lower).
These results were also confirmed with the FLI's.

4. v And

For a primary-mass of 1.3/, the HZ lies approximately between 1.2 and
2.6 AU [12]. In Fig. 5 the orbits of all three known planets al®wn as black
circles and the HZ is marked as a grey circle. As one carnvs&ed d moves
partly inside the HZ and also And ¢ moves very close to the inner edge of the
HZ; so we can assume a very unstable HZ, where the mean mesonances
with the two nearby planets play an important role. Addiily the known
planets themselves become unstable for higher ecceiasickorv And ¢ we
choose eccentricities between 0.08 and 0.48 with a stepladrid forv And
d we choose eccentricities between 0.07 and 0.47 again wstepaof 0.1.

All calculations were done for inclinations of the testygts from0° to 50°
with a step of5°. Fig. 6 shows the results for this calculations in the case of
ey andc = 0.08 ande,, ang g = 0.07, here one can see a stable region between
1.38 and 1.6 AU (black region) up to an inclination of about.48lready for
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Figure 4. upper: shows the orbits of 55 Cnc b and 55 Cnc c; lower: show/itie evolution

of the semi-major axis of 55 Cnc b and 55 Cnc c (the lower lir@\sh55 Cnc b; the upper line
shows 55 Cnc ¢) foess cncb = 0.02, es5 cncc= 0.44 andess cncd = 0.06.

an eccentricity ob» And ¢ of 0.18 the stable region shrinks drastically and for
an eccentricity ob And d of 0.17 the stable region disappears completely.
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Figure 5.  Heliocentric orbit for the planets in the systamAnd (black circles); the grey
region mark the HZ in this system.
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Figure 6.  Maximum eccentricity plot for the system And with e, anac = 0.08 and
e, andd = 0.07. Black regions show low eccentricities (stable motion) #mel grey scales
show higher eccentricities (unstable motion).

5. Conclusions

In this study we investigated the dynamical stability irside HZ of the two
systems 55 Cnc and And, which are both multiple planetary systems and
parts of binaries. Our investigation showed, that the Hzhefgystem, And
is, because of the two very close planets on high eccentiitsprery chaotic.

In the HZ of this system stable motion is just possible in alsregion (be-
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tween 1.37 AU and 1.6 AU) and only for very low eccentricitté$oth known

planets. Thus this system is not a good candidate for additibabitable plan-
ets. The results for the system 55 Cnc are completely difteidere the HZ is
very stable for a lot of initial conditions, just for high ili@ations ¢ > 40°) and

for high eccentricities of 55 Cnc eds cne ¢ > 0.34) the orbits within the HZ
are unstable, where 55 Cnc c itself would have close encauwith 55 Cnc b
and becomes unstable. If the eccentricity of 55 Cnc c is rgitdrithan 0.42,
stable motion in the HZ is possible and therefore this systeay be, from the
dynamical point of view, a good candidate for additionahgiis inside the HZ.
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Abstract The stability of hypothetical Trojan planets in exoplamgtsystems is investi-
gated. In the model of the planar three-body problem, cpoeding to a gravi-
tational system of a star, a giant planet and a Trojan planetstability regions
for the Trojan planet around the Lagrangian pdiatare determined depending
on the mass of the two planets and the initial eccentricityeforbit of the giant
planet. The results indicate that in exoplanetary systeitiisame giant planet of
several Jupiter-masses, a Trojan planet up to one Jupéss-oan exist in stable
motion aroundLy.

Keywords:  Trojan exoplanets — Stability

1. Introduction

The possible existence and stability of Trojan planets iopianetary sys-
tems have been the subject of several recent discussions. wkll known
that Trojan asteroids exist in the Solar System in great mumib can be ex-
pected that Trojan-type objects exist also in exoplanesgsgems. Laughlin
and Chambers [3] outlined a possible formation mechanisfirajfan plan-
ets in protoplanetary accretion discs. They also discudseduestion of de-
tectability of extrasolar Trojan planets. According toithesults two planets
with masses comparable to the mass of Jupiter or Saturnciesnlar-mass
star can perform stable tadpole-type librations about ggrdngian pointg.,
or L5 of the system. Pairs of Saturn-mass planets can also exestgeshoe
orbits around a solar-mass star, but this is not possibldupiter-mass pairs.
A pair of planets both in tadpole and horseshoe-type orbdsicée a charac-
teristic pattern in the radial velocity component of thetcanstar that could
be detected. Nauenberg [5] determined numerically theimesnl stability do-
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main of the triangular Lagrangian solutions in the gendmade-body problem
as a function of the eccentricity of the orbits and the Rauthass parame-
ter. This study indicates that there is a wide range of Jupize planetary
masses (including brown dwarfs) and eccentricities forciwiguch solutions
could exist in exoplanetary systems.

Most of the known exoplanets are gaseos giant planets héaigg masses
of the order of or several Jupiter-masses. The search fdf mastrial-like
planets with solid surface is an outstanding aim of severgbing and future
research projects. It is an important question, whethethHike planets can
exist in the habitable zone (HZ) of exoplanetary systemghdfe is a giant
planet in the HZ of a system, the existence of another pléesetis unlikely.
However, as Menou and Tabachnik [6] noted, terrestrialgiaoould exist at
the stable Lagrangian poinfs; or L5 of the giant planet moving in the HZ.

Erdi and Sandor [2] studied this possibility in detail, istigating five ex-
oplanetary systems (HD 17051, HD 28185, HD 108874, HD 27441]
HD 114783) in which the only known giant planet moves in the BY using
the model of the elliptic restricted three-body problemyttetermined numer-
ically the region around., of each system where stable tadpole-type motion is
possible. In [2] four other systems (HD 150706, HD 177830, 201367, and
HD 23079) were also studied in which the orbit of the giantptas partly out-
side the HZ due to its large eccentricity. It has been showhithall studied
systems there is an extended stability region araupdvhose extent depend
on the mass and the orbital eccentricity of the giant plaltes. possible that
Trojan exoplanets of negligible mass exist in these systems

Dvorak et al. [1] also studied three exoplanetary systemshich a giant
planet moves close to the HZ in low eccentricity orbit. Theyedmined the
size and the structure of the stability region arodndand L5 and pointed out
that the stability region shrinks significantly with the iaase of the orbital
eccentricity of the giant planet. It is possible that in hlete systems a small
Trojan planet could exist in stable orbits with moderatecatiicities.

In our previous study [2] we assumed that the fictitious Tregoplanet had
negligible mass. In this paper we study the problem more rgépegiving
mass to the Trojan planet up to 1 Jupiter-mass and deteriménesgions of
stability aroundZ4 in the model of the planar three-body problem.

2. Dynamical model and method of investigation

For the investigation of the nonlinear stability of orbit®and L, we used
the model of the planar three-body problem, corresponding dgravitational
system of a star, a giant planet and a Trojan planet, by asgy@s a first step
of a more general stability study, that the orbits of the thanpts are in the
same plane.
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To determine the dynamical character of the orbits we usedrtéthod of
the relative Lyapunov indicators (RLI) developed by Saretal. [7], [8]. The
RLI measures the difference in the convergence of the ftimte-Lyapunov
indicators to the maximal Lyapunov characteristic exptsi@f two initially
very close orbits. The values of the RLI are characteriyicgeveral orders
of magnitude larger for orbits in a chaotic region than in gutar domain.
The method is extremely fast in establishing the orderechaotic nature of
individual orbits, and therefore is very well applicablestglore the dynamical
structure of the phase space. According to our experimgaised in different
dynamical problems, it is enough to integrate the two vepgelorbits for a few
hundred times of the longest orbital period of the studiesiesy. In the present
investigation we integrated the orbits fod® periods of the giant planet.

In our computations we used the following parameters anhirorbital
elements.

= Mass of the central starny = 1 m (Solar mass)
m Mass of the giant planein’ = 1, 2, 3, 4, 5, 6, 7n; (Jupiter-mass)
= [nitial orbital elements of the giant planet:
— semi-major axisa’ = 1 AU
eccentricity:e’ = 0 — 0.30, stepsizeAe’ = 0.05
argument of the pericentre: = 0

mean anomalyM’ = 0

= Mass of the Trojan planetn = 0, 1, 2, 3, 10, 100 m g (Earth-mass) and
1my

= Initial orbital elements of the Trojan planet:

— semi-major axisu = 0.8 — 1.2 AU, stepsize:Aa = 0.001 AU
— eccentricity:e = 0
— synodic longitudeX — ' = 20° — 180°, stepsize A\ = 2°,

where A and \" are the mean orbital longitudes of the Trojan and the giant
planet, respectively. (Initiall)\” = 0, sinceN’ = M’ + w'.)

We computed maps of dynamical stability arouidin the following way.
Selecting a value of?’, ¢ andm from the given sets, we changed the semi-
major axis and the synodic longitude of the Trojan planehéndiven intervals
with the given stepsize and computed the values of the RL&lloresulting
orbits. Then we represented the logarithm of the valueseoRibl correspond-
ing to each initial point on thez( A — \’) plane on a black and white scale. In
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what follows we discuss the main characteristics of thespsm&ome repre-
sentatives of them are shown in Figures 1-8. Low RLI valuigghi(Iregions)
correspond to stable orbits, high RLI values (dark shadesgate chaotic be-
haviour. The black background corresponds to escape d@sioallorbits with
the giant planet. Considering that 7 values for the mass tf planets, and
also 7 values for the initial orbital eccentricity of the igigplanet were taken,
altogether 343 maps were computed. These dynamical gfamidips can be
used to establish the stability region aroungdin known exoplanetary systems
with one giant planet.

3. Maps of dynamical stability

Fig. 1 shows the stability region aroutdd for m = 0, m' = 1my, ¢ =0
(circular restricted three-body problem, with mass patame = m//(mg +
m’) = 0.001). It can be seen that there is a central more stable regiog@ngd
outwards a ring structure appears corresponding to higrdar sgesonances
between the short and long period components of the libratimotion around
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Figure 1.  Structure of the stability region around, in the circular restricted three-body
problem (n = 0, ¢’ = 0) for the mass parametgr~ 0.001 (m’ = 1m.).

The computations show that increasing the mass of the gianép the sta-
bility region becomes shorter in the synodic longitude armdiewin the semi-
major axis. Near its edge the ring structure disrupts intbarcof islands. In
Fig. 2, obtained forn’ = 2m , both a ring and a chain of small islands can be
seen. These islands are remnants of a former ring. The ghgiok the stabil-
ity region with the increase of the mass of the giant planebisnonotonic, it
reaches a minimum extensionrat = 6m; (Fig. 3), then it is larger again for
m’ = Tm (not shown in the figures).

In the elliptic restricted three-body problem, when= 0 ande’ # 0, the
structure of the stability regions is similar to that of theeglar problem. Figs.
4 and 5 show two examples which are somewhat different freengémeral
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Figure 2.  Structure of the stability region around, in the circular restricted three-body
problem (n = 0, ¢’ = 0) for u ~ 0.002 (m' = 2m.).
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Figure 3.  Structure of the stability region around, in the circular restricted three-body
problem (n = 0, ¢’ = 0) for u ~ 0.006 (m' = 6m.).

picture. Fig. 4, obtained faf' = 0.1, m’ = 4m, exhibits a well structured
stability region around 4. In Fig. 5, obtained foe’ = 0.2, m’ = 3my, a
compact stability region is present.
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Figure 4.  Structure of the stability region around, in the elliptic restricted three-body
problem fore’ = 0.1, &~ 0.004 (m = 0, m’ = 4m).
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Figure 5.  Structure of the stability region around, in the elliptic restricted three-body
problem fore’ = 0.2, i =~ 0.003 (m = 0, m' = 3m.).

When the Trojan planet has non-zero mass, the stabilitpnagistill quite
extended. Figs. 6 and 7 show the cases whes 1mg and10mg (in both
casese’ = 0, m’ = 1my). A comparison with Fig. 116 = 0, ¢ = 0)
reveals that the size of the stability region is about theesBomTrojan planets
of several Earth-masses as for negligible mass.

semi—major axis [AU]
log(RLI)

50 100 150
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Figure 6.  Structure of the stability region arountd, in the three-body problem fan =
1mg, e =0, m = 1lmy.

We determined the stability regions arouid in the planar three-body
problem for the combinations of the masses: = 1,2,3,10,100mg, and
1M;, m" = 1,2,3,4,5,6,7m , and initial eccenticity of the giant planet
¢/ =0.05,0.10,0.15,0.20, 0.25, 0.30. For a given pair ofn’ ande’ the size of
the stability region does not change much with the incre&se. d he changes
are larger whem is fixed, and eithem’ or ¢’ is changed while the other is kept
constant. The computations confirm the existence of a #tat#gion around
L4 even form = mj, when the mass of the giant planet is several Jupiter-
masses and its orbit is very eccentric. Fig. 8 shows theliyakegion for
m = 1lmy, ¢ = 0.3, andm’ = 1m . Increasingn’ at this value ofn andé¢/,
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Figure 7.  Structure of the stability region around, in the three-body problem fan =
10mg, e’ =0,m = 1my.

the size of the stability region decreases reaching itsrmim atm’ = 5m,
after which it grows again, as the computations show.
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Figure 8.  Structure of the stability region arourd in the three-body problem forn. = 1m ,
e =0.3,m =1my.

4, Size of the stability region

The size of the stability region depends on the masses’ and the eccen-
tricity €’. In [2] we determined this dependence far= 0. Continuing that
work we studied how the size of the stability region depensis anm. Fig. 9
shows the dependence of the size of the stability regionnardy onm’ and
¢/ for m = 1m for 500 periods of the primaries. The figure was obtained as
follows.

For a given pair ofe’ andu = m’/(mo + m’) we put the Trojan planet
in the pointL4 with zero relative initial velocity and checked if it staysete
or performs librational motion around, for 500 periods of the primaries.
(Certainly, the time interval in this kind of investigat®iis crucial, we took
this value as a compromise. The general features of theligtagiructure
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appear during this time.) Then we moved the Trojan plandtle &way from
L, along a line going throglt, perpendicular to the line of the primaries. We
checked again the librational motion of the Trojan planebcBeding in this
way we determined the largest distanc&om L, (perpendicular to the line
of the primaries) at which the Trojan planet starting withazeelative initial
velocity still performs librational motion around; and does not cross the line
of the primaries. We defined the stability region as the ktrgessible libration
region. Changing’ andy on a fine grid, we determined for each pair &f (1)
the largest= (in the unit of the distance of the primaries) corresponding
the largest libration region. For the sake of better vigagion Fig. 9 shows
the values ofl/log(e) instead ofe on a black and white scale. The light
region above the V-shaped curve corresponds to installititgtion is possible
below this curve. Darker regions correspond to larger fibral regions. It
can be seen that the size distribution of the stability negishows a complex
structure. The size is the largest when betrand i, are small ¢ < 0.1,

1 < 0.01). This means that in an exoplanetary system with one giamigpblof
several Jupiter-masses there can be a Trojan planet of piterdmass. The
fine structure of the figure confirms our previous finding timet $ize of the
stability region changes much either fiximg and varyingu, or vice versa.
There is also an extended stability region for small values’ g¢e’ < 0.1)
betweery, = 0.014 — 0.02. This was also found by Lohinger and Dvorak [4].
The unstable regions below = 0.014 and aty = 0.023 correspond to the
resonances 3:1 and 2:1 between the frequencies of libratamdZ,. The
finger-like structure on the left side of the figure may beteslao higher order
resonances.

0.000
~0.072
—0.144
—0.216
—0.288
—0.360
—04322
~0.504
—0.576

—0.648
—0.720

Eccentricity
loge(eps)

0.01 0.02 0.03 0.04 0.05
Mass parameter

Figure 9.  Size of the stability region aroundl, in the planar three-body problem for a
Trojan planet of mass: = 1m, depending on the ecccentriciy and mass parametgr =
m’/(mo + m’) of the giant planet.



Stability of hypothetical Trojan planets in exoplanetaygtems 93

Acknowledgments

The support of the Hungarian Scientific Research Fund urgemgtants
OTKA T043739 and D048424 is acknowledged. This researclalsasbeen
supported by the Austrian-Hungarian Scientific and TeabmolCooperation
under the grant A-12/04.

References

(1]

(2]
(3]
(4]
(5]
(6]
(7]
(8]

Dvorak, R., Pilat-Lohinger, E., Schwarz, R., FreistetE.: 2004 Astron. & Astrophys426,
L37

Erdi, B., Sandor, Zs.: 200%;elest. Mech. & Dyn. Astro92, 113

Laughlin, G., Chambers, J. E.: 200®8stron. J.124, 592

Lohinger, E., Dvorak, R.: 1993\stron.& Astrophys280, 683

Nauenberg, M.: 2002Astron J.124, 2332

Menou, K., Tabachnik, S.: 2003strophys. J583 473

Sandor, Zs., Erdi, B., Efthymiopoulos, C.: 20@elest. Mech. & Dyn. Astror78, 113
Sandor, Zs., Erdi, B., Szé&ll, A., Funk, B.: 2008elest. Mech. & Dyn. Astror@0, 127






STABILITY INVESTIGATIONS OF HIGHLY
INCLINED PLANETARY ORBITS IN
BINARY SYSTEMS

Imre Nagy, Aron Siili and Balint Erdi
Department of Astronomy

Lorand E6tvds University
i.nagy@astro.elte.hu

Abstract The stability of P-type orbits in a binary system (masseratjual to 0.5) was
studied on the semi—major axis vs. inclination plane, simib [10]. In the
present work we investigate a larger part of the phase spgasglculating the
relative Lyapunov Indicators and maximal eccentricities.

Keywords:  exoplanets, binaries, stability of planetary systems

1. Introduction

Observations show that 60% of the main sequence stars ar@ary tor
multiple systems (see [3]). Moreover, pre-main sequenaes shay indicate
that almost all of the stars are born in multiple systems (d4ge[5]). On
the other hand, until now more than 160 exoplanets have hiseovered, and
some of them belong to binary systems. These facts showhthaivestigation
of the stability of planetary orbits in binaries is very inmzmt.

The discovered planets in binaries move on satellite orlsts the planet
revolves around one stellar component (S—type orbit; sgelli Theoretically
there is another possible type of motion, the so called pdaperbit (P—type;
see Fig. 1), whereas the planet moves around both stars. dtlipeSorbits
were studied for some known systems by [6], [7], [8] and [9].

The stability of P-type orbits was also studied by [10] on skeni—-major
axis vs. inclination plane for a binary’s mass—ratio € my/(m; + ms))
equal to 0.5 by calculating the Fast Lyapunov IndicatorslEnd escape
times. They concluded that the stability limit varies bedwe2.1 and 3.85
binary separationb6) depending on the eccentricity of the binary, and found a
finger-like unstable island at inclinations= 15° to i = 45°.

95
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planet

Figure 1. In the left panel: satellite—type or S—type motion: the plamevolves around one
of the stars; right panel: planetary-type or P—type mottbe:planet revolves around both star,
i.e. it moves around the barycenter (BC).

In this paper we also study the stability of P—type orbitsl@rger part of the
phase space by using the methods of the Relative Lyapundsatods (RLI)
and the maximum eccentricity. In the next section we giveszidgtion of the
investigated system, the initial conditions and the apiptimerical methods.
After that we delineate and summarize our results.

2. Numerical setup
2.1 Initial conditions

For the integration of the equations of motion of the 3D ietstd three-body
problem we used the Bulirsch-Stoer integrator with adapstepsize control
in the case of the RLI, and the Runge-Kutta-Neystrom-FethiB<KN7(8) in-
tegrator with adaptive stepsize control for calculating tieximum eccentrity.
The orbit of the primaries, and initially the massless plar@bit is also circu-
lar, i.e. the eccentricity of the planet= 0. The semi—major axis of the planet
a is measured in the unit of the distance between the primaridghe initial
valuea varies from 0.55 to 4 with stepsiz®a = 0.005. We use four starting
mean anomaly/,) values for the planet)®, 45°, 90° and135°. These an-

resulting maps are the average of the fodiy. See later.) The inclinatiohis
the angle between the orbital plane of the planet and theergfe planesfy—
plane), which is the orbital plane of the binaries; initialue iy varies from
0° to 180° with stepsizeAi = 1.25°. Thex-axis is the line connecting the
primaries at = 0. We note, that this line coincides with the line of node if
1 # 0,t = 0, i.e. the node of the planet §& = 0°. Initially the argument of
the pericenter of the planetds) = 0°.

The above defined orbital elements are referred to a bamnyceeterence
frame, where the mass of the barycentets= M; + M. Using the usual
procedure, the barycentric co-ordinates and velocitie® walculated. After
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X
‘

pericenter

Figure 2. Configuration of the system: BC is the barycenter, the s¢iparaf the stars is the
unit of distance; is the planet’s inclination with respect to the referenanplandi/, is the
initial mean anomaly of the planet.

that we transformed our co-ordinate and velocity vectora frame of refer-
ence withSs in the origin.

2.2 The maximum eccentricity method (MEM)

For an indication of stability a straightforward check lzhea the eccentric-
ity was used. This osculating orbital element shows the alvity of orbital
crossing and close encounter of two planets, and thereforalue provides
information on the stability of the orbit. We examined théné&éour of the
eccentricity of the planet along the integration, and ubeddrgest value as a
stability indicator; in the following we call it the maximuetcentricity method
(hereafter MEM). This is a reliable indicator of chaos, hessathe overlap of
two or more resonances induce chaos and large excursiohs actentricity.
We know from experience, that instability comes from a cicagtowth of the
eccentricity. This simple check has already been used &r stability studies,
and was found to be a powerful indicator of the stability elcter of an orbit
(see [2], [1]).

Calculating the maximum eccentricity an upper threshold used. When-
ever the eccentricity reached 0.8, the orbit was considerstiable, and the
integration was stopped.



98 CELESTIAL MECHANICS

2.3 The relative Lyapunov indicator (RLI)

The method of the relative Lyapunov indicator (RLI) has be#roduced
by [11] for a particular problem, but its efficiency was dersivated in a later
paper [12] for 2D and 4D symplectic mappings and for Hamidarsystems.

This method based on the idea that two initially nearby erait integrated
simultaneously and also the evolution of their tangentomscare followed.
For both orbits the Lyapunov characteristic indicator (L&lcalculated and
the absolute value of their difference averaged over tindeismed as RLI:

RLI(t) = %|LC’I(3:0) — LCI(zo + Ax)l, (1)

whereAz is the distance in phase space between the two orbits. Thetiberfi
of RLI contains an arbitrary parametér:, which may affect the result. The
authors have tested the sensitivity of RLI versus the norrthisf parameter
and found that the RLI depends almost linearly/om in the regular domain,
while it is practically independent of it in the chaotic damaNevertheless,
the value of the RLI is characteristically always severaleorof magnitudes
smaller in a regular domain than in a chaotic region.

3. Results

The resulting figures were obtained as follows: we startedritegration at
mean anomalyfy, = 0°,45°,90°,135° so we gotRLI(®), RLI*5) RLI(®0),
RLI(3%) and maximum eccentricity/ (O, M E®), M EWO0) - prp35)
also. The plotted value is an average:

RLI(a,i) 1 3 RLIMo) (g, )

4 MEMo)(q, i)’ @

ME(a,i) 4 (500,13
We note, that this averaging in the case of the RLI stresshhetic behaviour
of an orbit, whereas in the case of the maximum eccentricigyniot so drastic.

At first we calculated the same part of the phase space as jnWhich is
ag = 1.8—2.5 andip = 0—50°. We performed the calculations on a finer grid:
Aag = 0.005 bsandAiy = 1.25° (see Fig. 3). Our maps are very similar to
[10], except that our figures are more detailed, especiaélysecond RLI map,
where the system was integrated up to 1000 binary perlag)s Ih Fig. 3 one
can see some resonant formations, which appear at lowaratiohs and are
deviated at higher inclinations.

In Fig. 4 we show two maps for a larger domain of the phase spaueh
corresponds tag = 0.55—4 bsandiy = 0—180°, with stepsizef\ay = 0.005
bsAiy = 1.25°. Both maps contaifi91 x 145 points, resulting more thar®
orbits, if we take into account the averaging detailed albigenumber rises to
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2.5 a [binary separation] a [binary separation]

inclination [degree]
inclination [degree]

50

inclination [degree]
inclination [degree]

50

Figure 3. Upper right FLI for 10000bp in [10] Black indicates the stable zone, white the
unstable.Upper left: Maximum eccentricity for 100@p. White shows the stable zone, black
the unstableLower left: RLI for 200 bp. Colors like in max. eccLower right: RLI for 1000
bp. Colors like in max. ecc.

4 x 10° orbits. Each orbit was integrated for 100pin the case of the MEM
and for 500bpin the case of the RLI.

It is interesting, that the stable regions are wider in theeaaf retrograde
orbits (o > 90°) than for direct onesi¢ < 90°). In the RLI map we can see
several resonant formations. A resonant curve splits imteet stronger and
some fainter branches which makes it similar to a fork. Tlashs generated
by the applied averaging. For example in the case of the 3dnexnce: when
My = 0°, we can see a sharp vertical linesat= 2.085 bs at M, = 45°, the
centre of the line is shifted to = 2.175 bsand at)M, = 90° the centre is at
a = 2.23 bs The case of\l; = 135° is similar to My = 45°. The width of
the line grows with the distance from the 3:1 resonance=(2.08 bs). The
averaging shows simultaneously the three cases, prodti@rfgrk shape. The
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Figure 4.  Upper:MEM for 1000bp Lower: RLI for 500 bp White shows the unstable zone,
black the stable.

fork belonging to the 3:1 resonance iduces Pilat-Lohirsg@mger-like unstable
island (see Fig. 4).
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4, Summary

We investigated the stability region around a binary ondhe ¢ plane by
calculating the RLI and the ME. Our results are in very googament with
the results of [10], on the other hand they give informatibowt a more ex-
tended part of the phase space. The maps obtained by the Bkhsry fine
resonant structures. The stable regions are wider vihen 90° (retrograde
orbits). The resonant curves have a fork-like shape whichuised by the av-
eraging. We demonstrated that Pilat-Lohinger’'s unstaiand is created by a
triple fork-like resonant shape.
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Abstract

Keywords:

Gliese 86 is one of 3 binary systems with a close stellar cor@pb where an
extra-solar planet was discovered. The host-star is fledsas a K1 main-
sequence star and its stellar companion was first identiea lrown dwarf
(Els et al., 2001) and later as a white dwarf (Mugrauer & Nese# 2005).
In our numerical investigation we determine the stable zarmeind the K1V
star for different eccentricities of the binary system ithbostellar configurations
and compare the results of the systems. The planetary mistianalyzed by
means of (a) the Fast Lyapunov Indicator (FLI) and (b) theimar eccentric-
ity (max-e). A study of mean motion resonances in the Gliésgy8tem showed
that the perturbative effects due to the discovered plametestricted to very
close orbits. Therefore, we distinguish 3 regions: (i)itireer zong(1Z), which

is the region between the detected planet and the so-callaithble zone; (ii)
thehabitable zon€HZ) is defined as the region around a star where liquid water
can exist on the surface of a terrestrial-like planet; aiidtkie outer zong0Z)
which is the region outside the HZ, which is not influenced iy detected gi-
ant planet. For the computations different dynamical modedre applied —i.e.
the restricted four body problem for th&Z() and theHZ, the elliptic restricted
three body problem for thedZ). In general, the motion of fictitious planets in
the Gliese 86 system is very stable. Only for high eccetiggiof the binary
(> 0.75) chaotic motion occurs even in the HZ. In this case the stabie
shrinks to a small region around Gliese 86, where the edcintof an addi-
tional fictitious planet should be 0.5 due to perturbations of the detected giant
planet.

binary system: Gliese 86 — S-type orbits — stable regionsitdizle zone — Fast
Lyapunov Indicators — maximum eccentricity
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1. Introduction

The discovery of extra-solar planets in binaries led to avgrg interest of
stability studies of such systems, where we distinguishveen 2 types of
motion': the planet (or P-) type motionvhen the planet moves around both
stars and thsatellite (or S-) type motigrwhen the planet orbits one star. Up
to now we know 14 double star systems, where planetary coiomanvere
found in S-type motion.

Dynamical studies of planetary motion in binaries wereiedrout during
the last 25 years. There are general studies using eithérrgeebody problem
(see e.g. Harrington (1977), Szebehely (1980), Szebeh#gikenzie (1981))
or the elliptic restricted three body problétike the ones by Dvorak (1984 and
1986), Rabl & Dvorak (1988), Dvorak et al. (1989) and moresrely by Hol-
man & Wiegert (1999), Pilat-Lohinger & Dvorak (2002), Pilavhinger et al.
(2003) and Musielak et al. (2005). The last cited paper sdaalgo an appli-
cation to binary systems with observed giant planets, wtieye have chosen
three systems with a close moving planet among which theyctss as well
Gliese 86 — which is studied in detail in the present invesitgn. Furthermore
we have to mention that Benest studied in a series of papeesasdinaries
numerically (see Benest 1988, 1989, 1996, 1998 and 2003).

The binary Gliese 86 is about 11 pc away from the Sun in thetebas
tion Eridanus. The double star system consists of a K1 majoesee star
(m1 = 0.7Mg) and in all probability a white dwarf (with a minimum mass of
0.55Mg) at about 21 AU as proposed by Mugrauer & Neuhauser (2006yusi
NAOS-CONICA (NACO) and its new Simultaneous Differentiaddger (SDI).
The former detection by coronographic images using the E&tare optic
system ADONIS (Els et al., 2001) identified a late L or late ‘©vian dwarf
(BD) of about 50 Jupiter-masses moving at a distance of at [E&75 AU.
But Els et al. could not explain the linear trend in the obaton, as it can be
done by the new detection by Mugrauer & Neuh&user (2005). ddewy the
first who suggested a white dwarf (WD) companion for Gliesevaé Jahreil3
in 2001.

The planet is found to be very close to the K1 V star, at 0.11 Athan
orbital period of less than 16 days (Queloz et al., 2000). ©©uke CORALIE
measurements a minimum massiaf y,piter Was determined.

In our study we first examine numerically the dynamical bébraef ficti-
tious low mass planets in the binary Gliese 86, where we netiie detected
planet in order to define the stable region for different atgties of the bi-
nary (epinary).- The results for both binary configurations (i.e. BD or WD as
secondary) gave rise to carry out further investigatiorhisf tiouble star using
epinary = 0.2 and 0.7.
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Then we determine the mean motion resonances (MMRSs) of thray
Gliese 86 and we divide the region between the detected tptari®11 AU
and the secondary (at 21 AU and 18.75 AU, respectively) inpards: (i) the
inner zone(IZ) between the detected planet and the habitable zone, where
we can expect a gravitational influence of Gliese 86 b; (&)hhbitable zone
(HZ), where only the inner part might be perturbed by Gliese &&tat (iii)
theouter zongOZ) outside the habitable zone, which is not influenced by the
giant planet. The results for the different regions arewdised in sections 4 —
6.

For the computations two dynamical models are used: (i) ¢ls&ricted 4
body problem (R4BP) for thelZ and theHZ, (ii) the elliptic restricted 3 body
problem (ER3BP) for th©Z.

Contrary to most other studies, we determine the dynaniagd ef the orbits

not only through straightforward orbital computations & applied a chaos
indicator, with which it is easier to define the regions ofgderm stability.
As chaos indicator we use the Fast Lyapunov Indicator (HEipéschlé et al.
1997) and combine the results with the evolution of the @ritcentricity. In
the next section we describe the numerical methods and itied gonditions
for the computations.

2. Numerical setup

For the different numerical studies of the binary Gliese &dstermine the
stable zones in the orbital element space mainly by meaihe déast Lyapunov
Indicator (FLI). This chaos indicator measures the len@th®largest tangent
vector

P(t) = sup [[oi(®)]] (1)

(wherei = 1,...n andn denotes the dimension of the phase space) and is
therefore, a fast method to distinguish between regulachadtic behavior. It
was introduced by Froeschlé et al. in 1997. To carry out tleessary compu-
tations, we modified the n-body prograwf R. Gonczi, (from the Observatory
of Nice, France).

Moreover, we check the stability of the orbital motion byatdhting the
maximum eccentricity (max-e) (a) over the whole integratione and (b) for
successive subintervals (of either 50 or 500 y&ats verify the variation of
the max-e. This is an easy criterion to distinguish betwegnlar and chaotic
motion which was used e.g. by Laskar in 1994 to show the lengr-evolution
of the planets in the Solar System. In general it is calledegimaximum
action methodsee Morbidelli, 2002, p. 106) mup-map methofaccording
to Froeschlé & Lega, 1996 ). The computations for this stugycarried out
using the Lie-series method, which has also an adaptivesstepcontrol for
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the correct handling of possible close encounters of galdsidies (for details
see e.g. Lichtenegger (1984) and Hanslmeier & Dvorak, ()984

The initial conditions of the massive bodiese taken from the papers by
Els et al. (2001) — when the secondany is a brown dwarf (BD) — and by
Mugrauer & Neuhauser (2005) — when the secondagyis a white dwarf
(WD) —only the eccentricity of the binaryginary) was varied (see table 1) and
all angles —inclination (i), nodeY), perihelion distance) and mean anomaly
(M) — are set to zero.

Table 1. Orbital parameters of the binary Gliese 86

my (KLV star) mgo (BD) meo (WD) mgs (planet)

mass: 0.7M s 50 M; 0.55M¢ 4M;
semi-major axis [AU]: 0. 18.75 21 0.11
eccentricity: 0.0-0.7 0.0-0.7 0.0-0.7 0.046

The initial conditions of the fictitious planegse given in table 2

Table 2. Initial conditions of the massless bodies

orbits in the R4BP orbits in the ER3BP
semi-major axis [AU]:  0.14 — 1. (with step: 0.01) 0.3 — 10.5tfwstep: 0.01)
eccentricity: 0.,,0.1,0.2,...,05 0.,0.1,0.2,...,0.5
inclination [deg]: 0 0 — 45 (with a step of 5)
Q,w, M: 0 0

and the integration time for the FLI computations is betwd@&0 and
100000 periods of the binary, which seems to be not very mBahwe have
to point out that the dynamical state of an orbit can be detexchwith the
FLIs about 200 times faster than by calculating the Lyapuctoaracteristic
exponent (LCE). In addition we combine the FLI results with those of the
maximum eccentricity.

3. General stability studies

3.1 Stability of S-type motion around Gliese 86 A (without
the detected planet)

Since we do not have any knowledge about the binary’s edciyt- nei-
ther from the detection by Els et al., 2001 nor from the neweolzions by
Mugrauer & Neuhduser, 2005 — we study the region between fh¥ Ktar
and the secondary (BD and WD, respectively) — where we netflediscov-
ered giant planet — in order to define the stable zones of &+tyqtion around
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Gliese 86 for different eccentricities of the binaeyigary = 0t0 0.9 with a step
of 0.05). As dynamical model we use the ER3BP, where thealrb&havior
is determined by (a) the application of the FLIs and (b) the+@aThe initial
conditions of the Gliese 86 system are given in table 1 oice& (i.e.m; and
both my). The massless bodies are started in circular motion at-seajar
axes between 0.3 and 12 AU with a step of 0.01 AU. And the coatiouis
time is 100000 years (i.e. more than 1000 periods of the yinar
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Figure 1. The stability of a fictitious mass-less body in the graviaéil field of the binary
Gliese86 AB, where the detected planet at 0.11 AU was neglecDne can see three zones
(stable,mixed and chaotic) for both configurations: dadimes with open and full squares for
a WD and full lines with open and full circles for a BD as secanyd

The results of the FLI computations are shown in fig. 1 whiclitsphe
(semi-major axispinary) Parameter space into 3 zones: (gtable zonavhose
border (dashed lines with black squares for = WD)/solid line with black
circles (formy = BD) is defined by the largest distance from Gliese=86)
up to which we have found only regular motion; (iichaotic zongwhere no
regular motion can be found — which is outside the dashedviitle open
circles; and in-between the two border-lines one can sgea(inixed zone
where both regular and chaotic motion can be found (see g.¢.8, where
these 3 zones can be clearly seen). For the old system= BD) one can
see that the border of the chaotic zone is nearly constand bgnbry = 0.2
with values around 7.2 AU. An increase of the binary’s eageity leads to
an almost linear shift of this border towards the host-stég8 86. Moreover,
one can recognize a quit similar development of both badides for high
eccentricities dpinary > 0.65), where the mixed zone is quite small. In contrast
thereto, we have a large mixed zone for eccentricities up3o 0

For the new systemf{, = WD) the two border-lines show always a decrease
of the stable zone and an enlargement of the chaotic zone thiedoinary’s
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eccentricity is increasedemark: As a comparison we did some computations
using the general three body problem with a planet's mas$otia5 Jupiter-
masses. For such a system the stable zone shrinks sigrificenty for high
eccentricity motion of the fictitious planetyfanet > 0.3) .

According to the results illustrated in fig. 1, we have chosem eccentrici-
ties of the binary: (iepinary = 0.2 and (ii) epinary = 0.7 for which we carry out
further numerical studies.

3.2 Mean motion resonances

Secondary

Fa A /AR
-2-4:.:§i/ilii‘
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Figure 2. The mean motion resonances (MMRs) up to the order 20 of arniawalifictitious
planet with respect to Gliese 86b (lower part) and with respe the secondary (upper part).
The x-axis denotes the number of periods either for a ficttiplanet (lower part) or for the
secondary — BD — (upper part), and the y-axis shows the paogifi the resonances (on a log-
scale). For a better understanding of the graphical prasentwe give the following examples:
e.g."2" atr = 1 andy = 11.14 (upper part of the figure) means 2:1 resonance of a fictitious
planet with the secondary at a=11.14 AU; and "2tat 1 andy = 0.174 (lower part) means
1:2 resonance of a fictitious planet with Gliese 86h at 0.174 AU. The hatching denotes the
region which is occupied by the secondary, and since we dbana any knowledge about its
eccentricity we marked this region fegecondaryfrom O (left border) to 0.9 (right border). The
dotted region labels the habitable zone of Gliese 86. Heedtearly seen, that the MMRs
do not influence the HZ of Gliese 86 except the high order MMk vespect to the detected
planet, which are not that important. We have to note thatiR-plot for the new system
(m2 = WD) is quite similar to fig. 2 — so it is useless to show both.

To get a first picture about the gravitational influence ofsheondary (i.e.
the brown dwarf) and of the discovered planet on a fictitiolamgt moving
in the region between these two bodies, we computed the medanmreso-
nances (=MMR) up to the order 20. Its representation is gindiy. 2, where
the lower part is with respect to the detected planet, theupart is with re-
spect to the secondary and the dotted region labels theabébitzone. It is
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max-e results for ey, =07 (BD)

max-e results for ey, = 0.7 (WD)
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Figure 3.  Stability maps of a fictitious massless planet in the where the eccentricity of
this planet is varied between 0 and 0.5 and the binary’s égcigy was fixed to 0.7 (since we
expect perturbations of the secondary inltheonly for high values oépinay). (&) The left panel
summerizes the e-max results for the old system (BD as sacgndhere the different gray
shades in the stable zone indicates regions of various nuaxigtcentricities which increases
permanently from 0.2 (black zone) arougghnet = 0.05 to 0.6 atepanet = 0.5. Additionally,
one can see that initial circular motion belongs to a highax-@ level. The faintest region
represents the unstable motion where the maximum ecdéntsias 1. (b) The right panel is
the result for the new system (WD as secondary), which shbersame overall structure. For
more details see section 4.

clearly seen that most of the resonances with respect toetieetéd planet are
concentrated to distances 0.3 AU from the K1V star and only a few, very
high order resonances are in the habitable zone. Furtheryrfigr 2 explains
quite well the application of different dynamical modelg:tkle R4BP for the
regions where we can expect an influence of the detectedtplamethelZ
and as well thédZ; (ii) the ER3BP for theDZ.

The slanted line defines the peri-center distance of thenskacy for different
eccentricities — from O (upper left position) to 0.9 (lowight position) —which
indicates already an influence on the HZ for high eccenyritibtion.

4. The orbital behavior of fictitious planets in the inner
zone

For the study of the region, where we have to expect an infRiehthe de-
tected giant planet according to the MMR result, we use th@HRRdnd the ini-
tial conditions given in section 2 for the massive bodiese phrameter space
of Gliese 86 is explored in two planes: thg (epinary)— and in the ¢o, epianed—
plan€. We determine the orbital behavior by means of the FLI, whioh
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computed for at least 1000 periods of the binary. Low valueth® chaos
indicator label regular motion which is given by the darkioegn fig. 3.a.

The study in the o, epinary)—plane for circular planetary motion is not
mapped since it can be described easily as the border betnegatar and
chaotic motion is atiy = 0.19 AU for all eccentricities of the binary. Within
the chaotic region a stripe of stable motion ¢gt= 0.15 AU) for all epinary
was found, which is connected to the 8:5 MMR with Gliese 86lndAn
the stable zone two small chaotic islands appear: ong at 0.23 AU for
0.2 < epinary < 0.4 (next to the 1:3 MMR) and one af ~ 0.206 AU for
epinary = 0 (close to the 2:5 MMR).

The results of a similar study for various eccentricitiedidtitious planets
(eplaned and a fixed eccentricity of the binary (i.e. 0.7) are giventdoth sys-
tems (BD and WD as secondary) in figs. 3.a and b. Comparingabhelots
one can see the same overall structure: (1) An increase @idhnet's eccen-
tricity invokes as expected an increase of the chaotic re@ihite regions) (2)
The border between regular and chaotic motion is dominagetthdy appear-
ance of mean motion resonances. Which can either stabikzmbtion — like
at 0.15 AU forepianet = 0 (8:5 MMR) or at 0.16 AU for0.05 < epjanet < 0.1
(7:4 MMR) — or destabilize the motion (faint stripes in theldeegion — like
the 3:1 MMR at about 0.23 AU); Both max-e plots show quite tanislevel-
curves for the maximum eccentricity in the stable regionhst tve do not ex-
pect a significant influence of the detected giant planetcsibeon the outer
part of thelZ for the BD secondary and at least for low-eccentricity motd
the fictitious planets in the case of a WD secondary.

5. The habitable zone around Gliese86 A

The HZ is roughly speaking the region around a star, wherditons sim-
ilar to that of the earth can be found for a terrestrial-likengt, so that a bio-
sphere can be built. One of the most famous work thereto whksped by
Kasting et al. in 1993, which is still a reference work for matudies nowa-
days. However, the discovery of numerous extra-solar pgameotivated sci-
entists of different fields of research to improve the de6inibf the HZ based
on the actual knowledge of research (Lammer et al. — ISSeptop005).

Stability studies are important contributions theretog¢silong-term stability
of planetary motion in the HZ is a necessary requirementiierdevelopment
of a biosphere. The wideness of the HZ is limited to a smalbreglepending
on the spectral type and the age of the host-star, therdferplanet’s eccen-
tricity has to be small enough if we require that the planedhigays in the
HZ.

In the case of Gliese86 A the HZ is — according to Kasting et(4B93)
— between 0.48 and 0.95 AU. As the detected gas giant moved htAlJ,
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Figure 4.  Maximum eccentricity plots of the HZ of Gliese86 A (x-axigy fictitious planets
with different initial eccentricities (y-axis) upper patier a BD secondary and lower panel for
a WD secondary. The gray shades indicate the different saimax-e, where the darkest area
shows in each plot the region of highest maximum eccentriEior more details see the text.

its gravitational influence on the HZ is not very strong, asah be seen in
fig. 2, where only high order resonances can be found in thie.z®he most
important question for the binary Gliese86 AB is, where wasyilanet built.
If it was formed at a distance between 4 and 5'Adnd migrated towards the
star through the HZ, an already existing terrestrial-likenpt would have been
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ejected from the system. But if the gas giant was built clas#re star — maybe
quite near to the region, where it was found (see Wuchterl. e2@00), then
we can expect terrestrial-like planets in the HZ (which carire detected up to
now). However, there are only a few studies that deal wittuifieult problem
of planetary formation in binaries (see e.g. Kley, 2001;8eBurkert, 2000;
Nelson, 2001 or Nelson & Papaloizou, 2003), which needsssiiit of work.

Our stability study shows the HZ of Gliese 86 in a very staltéesup to
an eccentricity of the binary of 0.75 (for a BD secondary) an (@r a WD
secondary). While for highet,inary the HZ will be chaotic (see fig. 1).

In a dynamical study of the HZ it is important to control theokenion of
the orbit’s eccentricity, which should be small enough s the planet moves
always in the HZ. Therfore, we show the results of the maxadystor both
systems (BD and WD as secondary). As dynamical model we hecd4BP,
where we studied the influence of the giant planet on a masbledy in the
HZ. Figs. 4.a and b summarize the results of the two systeimsjvghow con-
stant level lines of the max-e for initial eccentricitiestbé planet> 0.09 in
both plots. More precisely, the value of the max-e level ewsrresponds to
the initial value ofepjanet FoOr lower values of the planet’s eccentricity differ-
ences can be clearly seen. However, the darkest region stiaags the zone
with the highest max-e value, and the “finger-like* shape -ctlis different
for the two systems — indicates the region of lowest e-max.

The border of the so-called “continuously habitable zonelT (i.e. the
region, where the whole planetary orbit is in the HZ) depeni®m the dy-
namical point of view — on the initial eccentricity of the pkt in the HZ. In
table 3 the boundaries for the CHZ are given for differeneetudcities of the
fictitious planets — up to 0.33, which is the largest ecceityrifor the HZ of
Gliese A to find a whole planetary orbit in this zone (for higkecentricities
the CHZ would not exist anymore).

The inner boundary for circular motion is in both panels ah0.52 and the
outer boundary is around 0.88 AU for the old system and ab&3 AU in the
new system. For low eccentricities of the planet it is ckeaden that the two
border-lines disperse up t@janet = 0.06, due to lower values of max-e, while
a further increase of the planet’s eccentricity leads tanarease of the max-e
value, where the two border-lines will converge. In bothesagne can see the
inner border at 0.565 AU and the outer border at 0.852 Albf@het= 0.15.

For a better understanding of the max-e level curves in timamhycal maps
of figs. 4.a and b, we show as an example the evolution of themuax ec-
centricity for an initialepianet 0f 0.06, where the max-e value is constant (i.e.
0.06) up to a semi-major axis of 0.66 AU and increases ligesfterwards to
0.116 at 0.98 AU. In fig. 5 one can see different time evol&iohthe max-
imum eccentricities for various initial semi-major axestioé planet (0.5 AU,
0.6 AU, 0.7 AU and 0.99 AU) where we computed the maximum ettty
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Table 3. Boundaries for planetary motion in the HZ of Gliese 86

eplanet__iNNer boundary [AU]  outer boundary [AU]

0.06 0.5106 0.9245
0.07 0.5161 0.9159
0.08 0.5217 0.9074
0.09 0.5275 0.8991
0.1 0.5333 0.8909
0.11 0.5393 0.8829
0.12 0.5455 0.8750
0.13 0.5517 0.8673
0.14 0.5581 0.8596
0.15 0.5647 0.8522
0.20 0.6000 0.8167
0.25 0.6400 0.7840
0.30 0.6857 0.7538
0.33 0.7164 0.7368

for intervals of 500 years. All curves show a very regularayedr, certainly
with different amplitudes and periods depending on the geajor axis: (a)
the variation of the semi-major axis from 0.5 to 0.66 AU causeeduction of
the amplitude and the period of the max-e curve (see lowee? Ibf fig. 5) and
(b) on the contrary the variation of the semi-major axis fr@:7 to 0.98 AU
blows up the amplitude and reduces the period of the cunesugper 2 lines
of fig. 5). This plot explains very good the difference betweenstant level-
curves (lower 2 lines) — where the max-e value correspontisetitial epjanet

—and an increase of the maximum eccentricity depending @seimi-major
axis (upper 2 curves).

6. Planetary motion in the outer zone

In figs. 6a-d we summarize the numerical results of the regigside the
HZ in the two systems. As expected the more massive WD redbeestable
zone: forepinary = 0.2 from more than 7 AU to less than 6 AU (compare
the left panels) and for a high eccentricity motion of theanyn(epinary =
0.7) the border of stable motion is shifted from 2 AU to less thah AU.
The most significant features of the max-e result (lower [garege the non-
dependency of the stable zone on the inclination of the plapeto about
38 deg, while higher inclinations show a decrease of the stable zue to the
Kozai resonance — which influences the whole zone at thegeitiginations
since we recognize an increase of the eccentricity acoptdithe gray shades.
The same behaviour was found for the new system, but the adnisbrder
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Figure 5. Time evolution of the maximum eccentricity for 4 differen&ug positions of the
planet: 0.5 AU, 0.6 AU, 0.7 AU and 0.99 AU, the initial eccecitly of the planet is in all cases
0.06; epinary is set to 0.7 and the computation time is 1Myrs. The diffebeftavior of the curves
is described in the text (section 5).

between regular and chaotic motion is shifted to nearly 5 Atkfinary = 0.2
and nearly 1.3 AU fokpinary = 0.7.

In the upper two panels of fig. 6 one can see that an increa$e @ianet's
eccentricity leads to a slight decrease of the stable zoievas already found
in the old system with the BD secondary (see Pilat-Lohinget.e2003).

7. Conclusion

In our numerical stability study of the binary Gliese 86 weidi the investi-
gated region between the detected giant planet at 0.11 Altthergbcondary (a
white dwarf at about 21 AU or a brown dwarf at about 18.75 AW) id zones:

(i) 1Z —inner zone — is the region from 0.14 to 0.48 AU which is inficesh
gravitationally by the giant planet, mainly by mean motiesanances,
which can stabilize or destabilize the region.

(i) HZ is the habitable zone, which is from the dynamical point efwvery
stable for this system, especially for weakly eccentriciamobf the bi-
nary. From the 3 cases of HZ:

1 the HZ is between the host-star and the detected gianttplane
2 the giant planet moves in the HZ,
3 the HZ is outside the discovered giant planet,

that we can distinguish from the observations for dynamsatatlies,
Gliese 86 A is an example for the third case. As a consequerceaw
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Figure 6. Stable zone for planetary motion in the binary Gliese 86 A: upper two panels
show the results of FLI computations in the new system (thed&&ndary) and the lower two
panels show the e-max results of the old system (the BD sacpndThe eccentricity of the
binary is 0.2 for the left panels and 0.7 for the right pandlke stable motion in the (a,i)- or
(aeplanet)-plane is given by the dark region in all plots. Please nbéedifferent scaling for

the figures.

say, it has from the dynamical point of view a high probapibf host-
ing an Earth-like planet in the habitable zone, as it wasfalsod in the
study by Menou and Tabachnik (2003).
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But for such systems the most important question is, whezegthnt
planet was built — at or beyond 5 AU or closer to the positiohere
it was found — but this cannot be answered by pure dynamiagdies.
Although if the FLI result shows the HZ fully stable, an adfiial max-
e study is necessary to define the dynamical continuousliyeidd zone
(CHZ), within which the fictitious planets remain all the 8m

However, we have found that even for an eccentricity of Othebinary
the whole HZ of Gliese 86 is stable.

(i) OZ - outer zone — is the outermost region, where the detectatktpla
has no influence, so that the stable zone depends only on &g nai#
and the eccentricity of the binary. A comparison of the olte(BD
secondary) and the new system (the WD secondary) shows pleetex
decrease of the stable zone in the new system due to the migtssr of
the secondary.

In a future work we will use this binary to study the influené¢amot-Jupiter
on the HZ in detail.
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Notes

1. According to Dvorak (1986) there are 3 types of motion imaby systems but since the libration-
(or L-)type motion is limited to certain mass-ratios of thetmassive bodies~ 1/25), studies of binary
systems can be restricted to the S-type and P-type motion.

2. The elliptic restricted three body problem studies théioncof a massless body moving in the grav-
itational field of two massive bodies, which move in Keplar@bits around their center of mass.

3. Inthe restricted four body problem we study the motion ofassless body in the gravitational field
of the primary & m;), the secondary=£ m2) and the giant planetf m3)

4. The program of R. Gonczi applies the Bulirsch-Stoer metfoo the orbital computations and deter-
mines also the Lyapunov Exponent in its original version.

5. The time interval for the maximum eccentricity dependshenchosen integration time.
6. private communication with C. Froeschlé and E. Lega

7. ag is the initial semi-major axis of a fictitious planet;inary is the initial eccentricity of the binary
andepjanetis the initial eccentricity of a fictitious planet.
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8. Due to the observational techniques all detected plaretgas giants - but hopefully the planned
space missions (like COROT, Darwin, TPF, ...) will find tetr&l-like planets in the HZ of other sun-like
stars

9. An ongoing project supported by the International Spamere Institute in Bern, Switzerland

10. Before the discovery of extra-solar planets it was abaioy A. Boss that the formation of gas planets
is at or outside 5 AU (which is called snow-line).
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Abstract To investigate the effect of a star approaching a planetsgsiem | made calcu-
lations for the orbital elements of the planet and initialditions of the intruder
star.

As aresult of these calculations | got 2D and 3D graphicowsitthe changes
of parameters at close encounters between stars.

Keywords:  Stellar — Close Encounters — Exoplanets

1. Introduction

Examination is made of the effect of a star approaching agplstar system.
When a passing star encounters a planetary motion, it ctusehanging of
the semimajor axig, the eccentricitye, and the inclination of the planet’s
orbit. Calculations were made for penetrating encountehgn the approach
of the intruder was less tham, and for close encounters, when the closest
approach of the intruder was 1-40

First let's consider the examined parameters and some okthdts. Lyt-
tleton and Yabushita [1] calculated the variation of theitatbelements. A
Gaussian distribution of star velocities was assumed ieroa estimate the
cumulative effects of series of encounters. They used thegaidimit theo-
rem of probability and supposed that the velocity of the jpasgerturbing star
wasv = 20 km/s, the star density).1 star/pc?, and the examined time was
T = 4-10° years.

If stars are passing at a distance of some ten times greates tthe cumu-
lative effects are found to be of the orderléf* for Ae andAi, and10~¢ for
2. For close stellar encounters direct numerical integnatishow that both
capture and disruption (expulsion of the planet) can occur.

119
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Yabushita [2] examined the stellar perturbations of orbitomets with
long-periods and extremely eccentric orbits when the skbdistance between
the passing star and the Sun is greater, than the apheli@amcisof the comet.
It was found that although the energy perturbation is onlgvapercent of the
bounding energy of the comet, changes,jrfperihelion distance) of a few AU
can occur. Close encounters were investigated by numéniegjration using
random initial conditions. The probability of the expulsiof comets depends
on the closest approaghand is0.031 for p = 10% AU, 0.006 for p = 103 AU,
and0.001 for p = 10* AU.

Hills [3] reported the results of computer simulations adsg# encounters
between a planet-star system and a stellar intruder. Us8igaanpine-Gordon
(variable order, variable stepsize) integrator the inpuése the closest ap-
proachp and the velocityv of the intruder. Wherp was2 — 3a, the result
was orbit-increasing or dissociating of the planetaryeaystForp > 3a mild
shrinking occured. Close encounters are disruptive, inyncaises disruption
can occur. Another case is the planet capturing, when tharstgruder cap-
tures the planet.

The effect of the mass and the impact velocity of the intrudlas studied
by Hills and Dissly [4]. In their simulations the mass of timruder was 0.1
- 100 times the mass of the star of the star-planet systemy &kemined
the cross sections for dissociation, the changing of thgabrbnergy and the
eccentricity of the planet. According to their results iétimpact velocity is
less, than the orbital velocity, the planet’s orbit shrinbtherwise it expands.
The star-planet system is soft if the bounding energy of yiséesn is less than
the kinetic energy of the intruder. Contrary to a myth thatii@naries shrink,
soft binaries expand in encounters with stellar intruderg should speak of
fast or slow intruder limit (between the expanding and thénging) rather
than soft or hard binary limit. This behaviour was first netldy Aarseth and
Hills [5], but they simulated star-star systems, not stangt systems. Their
study was based on computations relative to binary starshinhathe binary
and the intruder had nearly the same masses that is all trasgasiwere equal.
They examined the influence of encounters of the major @anih random
massive objects.

Distant encounters and their importance on the dynamicdligon of plan-
etary systems was studied by Brunini [6]. He consideredweeliody prob-
lem with a massive primary and with smaller secondary inutaicorbit. The
system was perturbed by a third massive body. Closest agmsand high
velocity encounters were examined too. In the case of pairgrencounters
the closest approach is less, than the separation of thensy3the change of
the internal energy can be described accurately by an im@ydproximation.
In this case the time of relevant interaction is shorter ttrenorbital period
of the system. Distant encounters take place in a time spagetathan the
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orbital period. The relative position of the binary membehsnges consid-
erably. The interaction cannot be described by impulsecqomation. The
interaction can be studied by means of the Fokker-Planchktems or direct
numerical integration. Brunini [6] made an application be touter planets
of the Solar System. Distant encounters may excite theabnzocity of the
planets. The secular transfer of impulse increases theabeuicentricity, ife is
negligible before the encounter. If the orbit is eccentiie, above eccentricity
increaments adds toquadratically, as in a random walk. It was made some ap-
proximations: the eccentricity of the planets was consfaerturbations from
other planets were considered negligible. The regions abtt motion were
very small. Brunini [6] obtained surprisingly highe values, which was 0.003
for Neptune, with the closest star-star approack 230 AU. The observed
eccentricity for Neptune is 0.0085.

An application to the Kuiper belt was made too by Brunini [B].this case
an algorithm was used to determine the effect of successikterpations on
binary systems by distant passing intruders. The algorithwalid for eccen-
tric orbits. Random passing stars almost completely thisenthe belt beyond
some thousands AU from the Sun. The flattened structure dftigert belt
cannot extend much farther than this distance.

The frequencies of stellar encounters in an enviroment riepmn the
number-density of stars and the relative velocities. Taldbows the frequen-
cies of encounters in some enviroments.

Table 1. Encounter frequencies. The large encounter-frequendyeatGalactic Centre is due
to the large velocities of stars.

enviroment stellar density  encounter frequency

Solar environment 0.1 star/pcd 1 e;:;?é;ir

Stellar cluster 1.5 star /pc® 20 FEEE

Galactic Centre 100 star/pc? 100 Shcounter
2. Application of the model to intruders

The Lie integration is a fast integration method for theatdiintial equations
of motion of celestial bodies, applying Lie-series. Theibadea to use the
implicit Lie transformation to integrate the n-body praflés due to Grébner
[8], HansImeier and Dvorak [6] simplified the calculationtloé Lie-terms and
derived a recurrence formula. They solved in an optimal may2tbody prob-
lem, then they derived a similar method for the solution efrtFbody problem.

This integration method has two major advantages. Filistaitelatively fast
method, about 3 - 10 times faster than the n-body problemgdf &accuracy by
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Schubart and Stumpff [9]. Second, because larger stephemgin be used
(e.g. a step length of 135 days for Jupiter), roundoff eranessmaller.

The Solar System is not isolated in space. Random passirgy stalecular
clouds, and our galaxy, the Milky Way can play a role in theaiyical evo-
lution of the planetary system and the cometary cloud. Theanycal effect
of random passing stars is not negligible for the major gan&he effect of
the passing stars could had been stronger, when the SolEn®$yss young,
especially if the Sun and the planets had come into existenaestellar clus-
ter. If it happened so, we do not know how much time the Solate3y had
spent in its parent cluster, how many closeup stellar agheshad formed its
dynamics. | investigate the effect of close encounterstablace between a
passing star and Sun or a star in an exoplanetary system.

| examined a special three-body problem, in which a stefiauder is act-
ing on a star-planet system. | was interested in whetherrhie af the planet
shrinks or increases. My goal was to calculate the chanditigecorbital ele-
ments (semimajor axis, eccentricity, inclination) of thenet and the changing
of the bounding energy during the approach of the intrudénecystem.

For the calculations | selected a special star-planetisystewhich the mass
of the star is 1 Sun-mass, and the mass of the planet is 1 Eesh: The initial
orbit of the planet is circular, the semimajor axisf the orbit is 1 AU, so the
circular velocityv of the planet is30km/s. The basic plane of reference for
the calculations is the planet’s orbital plane.

The mass of the stellar intruder is 1 Sun-mass too, the velaglocity u
between the two stars B0km/s. In the initial position the passing star is
at R;;+ = 1720 AU from the star of the star-planet system. In a spherical
coordinate system two angle are necessary for the posikiands. The angle
A is measured along the orbit of the planet, its value is batvoeand 3600.
The direction of\ = 0o is opposite sense to the direction of the initial velocity
of the planet. The anglg is between the intruder star and the plane of the
planetary orbit, with values betweerd0 and90°. The initial velocity vector
of the passing star is parallel to the star-star section, inishitial distance
from this section i®. If gravity did not work and the intruder star conserved
the direction of the initial velocity, then the minimal disice between the two
stars would be. The value ofy is between 5 and 20 AU in the computations.

With these initial conditions | obtained the following rétsu

2.1 Bounding energy

The bounding energy of a celestial body is its mechanicalggnevhich is
the sum of the kinetic and potential energy. Fig. 1 shows tienge of the
bounding energy in time.
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Figure 1. changing of bounding energy in time

The approach occurs about the 100 000th day. The value ofadineding
energy oscillates before and after the approaching. Thediog energy of
the planet is not proportional to the semimajor axis of itsitobecause the
potential energy of the intruder star is significant durihg approach. The
period of the change of the semimajor axis period of the plaeéore and
after the approaching is the period of the planet-circoigti360 days, but at
the approaching it is 180 days.

2.2 Orbital elements

| investigated, how do the size, form and tilt of the orbitipe of the planet
change, so the examined orbital elements are the semimagot,ahe eccen-
tricity e and the inclination of the planet.

2.3 Changing ofa in time

The changing of the semimajor axis becomes significant wieeapproach-
ing intruder star is at 100 AU from the star-planet systemsHow the effect
of the distance on the changing of the semimajor axis | mafbelesions for
p = 5 and 10 AU. In case of these valuesyothe effect of the gravitation of
the intruder star is strong enough, but the star-planeésydbes not perish. In
Fig. 2 we can see the result, the rising and then the declifitige amplitude
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Figure 2. changing ofa in time

of the semimajor axis-undulation; after relatively grarstibations the new
value of the semimajor axis is almost the initial; the déiece between the
initial and the final semimajor axis is low. The maximal arhale of the os-
cillations of the semimajor axis is a hundred times gre#tan the initial-final
difference. When the value @fwas 10 AU, the maximum of the undulation
of the semimajor axis occured later thanpat= 5 AU. The cause of this is
the later pericentrum passage on the- 10 AU orbit. The curves show that
the period of the change of the semimajor axis is close todlkfegeriod of the
planet-circulation.

2.4 Changing ofe in time

The value of the eccentricity of the orbit undulates and Uguzecomes
greater during the passing, particularly at low initialues ofp (see Fig. 3).
The period of the change of the eccentricity is close to theg®iod of the
planet. The amplitude of the undulation is greater, thardifierence between
the initial and the final value of the eccentricity. When= 10 AU, the max-
imal amplitude of the oscillations of the eccentricity isrih times greater,
whenp = 5 AU, two times greater, than the initial-final difference. Wiike
amplitude of the undulation is the biggest, the distancevéen the maxima
following each other is about the half-period of the planet.
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Figure 3. changing ofe in time

2.5 Changing of in time

For the computation of the changing@tnde | used the planar three-body
problem, but for Fig. 4 the motion of the three bodies is nanpl, the angle
between the initial velocity of the intruder star and theitatbplane of the
planet is2.8°. Whenp = 10 AU, the maximal amplitude of the oscillations
of the inclination is forty times greater, when= 5 AU, three times greater,
than the difference between the initial and the final in¢lora (see Fig. 4).
The approaching in both cases reduced the inclination adithiéal plane. The
period of the change of the inclination is close to the halfigd of the planet-
circulation.

2.6 Changing ofa, e,z in A

In Fig. 5, Fig. 6 and Fig. 7 the differences between the irgtnal final values
of the orbital elements, e and: are shown for different values of where\
is the initial longitude of the planet along its orbit. Thetied inclination of
the orbital plane i2.8°. Whenp = 4 AU, the semi-major axis vs\ function
has two maxima ak = 105° and at\ = 295°, the maxima of the eccentricity
vs. A function are at ab = 110° and atA = 300°, and the maxima of the
inclination vs. )\ function are at ah = 55° and at\ = 275°. For bigger values
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of p the maxima ofs, e, 7 are shifted to the right. Whemgrows,e and: grow
as well.

2.7 Changing ofa, e,z in 3

[ is the angle of arrival of the intruder star with respect t® ¢hbital plane
of the planet. The initial inclination of the orbital plare0.0°. The difference
between the initial and final value of the semimajor axis effilanet is biggest,
wheng = 0 (see Fig. 8). The orbit in all cases decreases. The final gaign
is biggest, wherd = 0 too. The change of the inclination @5 wheng =
0°, and maximal, wher = 35° (see Fig. 9 and Fig. 10). The curves are
symmetrical with respect to the initial conditions.

2.8 Changing ofa, e, 7 as the function ofp = z,

Let the parametep equal to thezy-component of the initial position of the
intruder star. In Fig. 11, Fig. 12 and Fig. 13 we can see tHerdifice between
the initial and the final values of the orbital elements in ¢thse of different
values ofzy andyy. Whenz, is smaller thar2.5, a decreases, the orbit shrinks,
its eccentricity significantly grows. Wheyp = 3, the difference between the
initial and the final inclinations can b&5°. The cause of the asymmetry of
the curve in Fig. 13 is the non-zero initial inclination og&tbrbit of planet.
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2.9 Changing of the orbital elements at close encounters

Fig. 14, Fig. 15 and Fig. 16 show the changingaofe andi at close en-
counters, when the intruder star arrives perpendiculah¢ootbital plane of
the planet. The parametersandy mean the shift of the initial velocity vector
of the intruder star. Their unit is AU. If both andy are zero, the initial ve-
locity vector points to the parent star. For other values the initial velocity
vector is parallel to the parent star-intruder star line #nedcoordinates of the
intruder star isc andy on the plane which is perpendicular to the line. The
change of, e, i is indicated as the function afandy. Fig. 14 shows, that the
difference between the initial and the final semimajor agigrieat, when the
approach between the intruder star and the planet is closgatNe semima-
jor axis means, that the final value of the semimajor axisss akgative, and
the planet is not bound. The initial value of the eccenyicst0. According
to Fig. 15 the new value of the eccentricity can be very bigpeeglly if the
planet is free. Fig. 16 shows, that the inclination can hawyevalue.

2.10 Stellar intruder at star-two planets system

What is the effect of another planet? | tried to show it. | oldted the
change of the orbital elements of the planet in the presehea additional
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planet which has one Jupiter-mass and the semimajor axis oftit is 5 AU.
Let us sign it withJ, the planet of Earth-mass withi, and the home star with
S. In Table 2 the numbet5.3 in the column ofS — E means, that the final
bounding energy i45.3 per cent of the initial one, so the orbit expanded. In
Table 2 we can see, that the expansion of the orbit is greateri £ system
than inS — F — J system. It should to investigate if this is true establishine
in the case of different masses end semi-majos axes of tbadg@tanet/.

Table 2 shows the probability of shrinking of the orbit of theer planet in
a star-planet{ — £) and in a star-two planet$(— E — J) system. We can see
that in the presence of a new, Jupiter-mass planet in the Intbdgorobability
of the shrinking of the orbit of the inner planet is bigger.

3. Conclusions

| considered encounters between star-planet systems antiwader star and
determined the effect of the distance- and angle parameft¢ine passing star.
The examined encounters were close. The change of the sajoi-axis and
the inclination of the orbit of planet is significant, whem tstellar approach is
close - 4-5a -, but they quickly fade, when the minimal distance betwédmen t
two stars is greater.
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Table 2. The relative changing of the bounding energy in the presandexbsence of a second
planet.S — E means a Sun-Eartly, — £ — J means a Sun-Earth-Jupiter system. The Earth-
mass first planet has 1 AU semimajor axis orbit, the orbit eflilpiter-mass second planet 5 AU
semimajor axis. The probability of the shrinking of the oufithe inner planet is expressed by
per cent for different values of and 3.

A 16} S—-FE S—-E—-J
0.0 0.0 453 99.1
45.0 0.0 43.8 100.0
90.0 0.0 32.2 99.3
180.0 0.0 43.3 100.0
270.0 0.0 33.9 99.2
0.0 45.0 413 97.5
0.0 90.0 9.1 98.3

Is there any pragmatic significance of the investigation uathsclose ap-
proaches? Neither in our Solar System, nor in any exoplansistem there
was any observation of close stellar encounter yet. Are fitegypient events at
all? We know that when two galaxies merge in one another, atspaf stars
do not occur. Close encounters between stars are stilloegireary. In the en-
vironment of the Sun only one closer than 100 AU encounter Ietexpected
within 10'? years. However, close approaches are more frequent in derese
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star-clusters. If the Solar System were born in a stellastetu it could have
several close approaches, these encounters could afeeclytramics of the
planetary system. Tracks of such stellar encounters, #ifgicts on the dy-
namical evolution may be observable in the Solar System apglanetary
systems, if they could be separated from the effect of thegtéa
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Abstract The probability of detection of Earth-like exoplanets magrease after the
launch of the space missions using the transit photometpsearvation method.
By using this technique, however, only the semi-major akik®detected planet
can be determined, and there will be incomplete informatgarding its orbital
eccentricity. On the other hand, the orbital eccentricityao Earth-like exo-
planet is a very important parameter, since it gives infaionsabout its climate
and habitability. In this paper a procedure is suggesteddafining the eccen-
tricity of an exoplanet discovered by transit photometrigagide the Earth-like
planet, an already known giant planet also orbits in thessgyst

Keywords:  exoplanets — planetary transit — restricted three-bodkglpno — stability — chaos
detection

1. Introduction

After the discovery of the first extrasolar planet around Bfjd3i (Mayor &
Quéloz, 1995), more than 190 exoplanets have been obsdrhedletection of
exoplanets has a great importance, since they form plansyatems around
their hosting stars, and by studying the main propertiehesd systems the
characteristics, the formation and the evolution of theaS8lystem could be
treated as a part of a more general phenomenon. The aboueepigtunfor-
tunately rather ideal than complete yet, since the exoanigserved by now
are mainly Jupiter-like gas giants. This is the consequefitie fact that by
using radial-velocity measurements, which is the mostéffe ground-based
observing technique, there is no chance to detect Earthplénets yet.
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On the other hand, one of the most challenging questions ajlaretary
research is the discovery of the Earth-like planets. Beidie importance in
testing and improving the formation theories of the planesystems, another
major question is their habitability. If an Earth-like p&immevolves in the hab-
itable zone of the hosting star, there may be chances of ajgngl (a water
based) life on its surface. The habitable zone is that regronnd the star,
where liquid water can exist on the surface of a planet (Kgst al 1993).

In order to find Earth-like planets, there are space missioe®nstruction
and planning phase. Such a mission is COROT (sponsored bySCEEA
and other countries) to be launched in 2006, the Kepler Blis@ASA) with
a launch in 2008, Darwin (ESO), and Terrestrial Planet Rif@@F, NASA)
with a launch in the next decade. The first two missions (CORQI Kepler)
will use the transit photometry as detection techniquectvis based on mea-
suring the periodic dimming of the star’s light intensityusad by an unseen
transiting planet. Measurements performed by these msints will provide
the semi-major axis of the transiting planet calculated from Kepler’s third
law

ad k2

72 ant
whereT' is the period of the transits;., is the mass of the hosting star, ang
is the mass of the transiting planet, respectivélis(the Gaussian gravitational
constant). In the case of Earth-like planets << m., so neglectingn,, does
not affect significantly the accuracy af An uncertainity in the semi-major
axisa can appear since the stellar mass is known only with limitmligacy.
If this is for example 3%, the inaccuracy inwill be 1%. (We note that the
mass of the hosting star can be determined by spectroscbhpéations and
by stellar model calculations.) However, in this paper wadbinvestigate the
error propagation due to these uncertainities in stellassnand semi-major
axis, we intend to perform these studies in a future research

In this paper we present a procedure which helps in confirfiegotbital
eccentricity and inclination of the transiting planet if (he duration of the
transit is known, and (ii) there is another (giant) planghmsystem. We derive
such an equation, which connects the mass and the radius stah the semi-
major axis, the eccentricity, the argument of the periasttbe inclination of
the transiting planet, and the duration of the transit. s #guation there are
three unknowns, namedly w, andi. By fixing ¢, the correspondin@v, e) pairs
can be visualized as curves on the- e parameter plane. Thus the problem
is underdetermined and there is no way to confine the orlstarricity e of
the transiting planet.

On the other hand, as suggested by planetary formation rsegneve ex-
pect that next to the Earth-like planets Jupiter-like giglainets can also be
found in the majority of the planetary systems. Having disced an Earth-

MM + mp)>
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like planet around a star, by using complementary techsi¢ag observations
by Space Interferometry Mission and ground-based Dopplectsoscopy) ad-
ditional more massive planets can be identified in the sysaeh their orbital
parameters can be determined too.

The presence of a giant planet (beside the transiting osaltsen that both
ordered and chaotic regions can be found in the phase spabe sfstem.
If the trajectory of the Earth-like planet is in the orderegion of the phase
space, the motion of the planet is stable for arbitrary lomgs. If the initial
conditions of its orbit are in a chaotic region of the phasscepthe motion of
the planet can be unstable after a certain time. In this papexclude those
orbital parameters of the transiting planet, which resutthaotic motion. We
shall demonstrate that in some cases it is possible to digieram upper limit
for the eccentricity and a lower limit for the inclination thfe transiting planet.
We stress again that the eccentricity is a very importantalrparameter not
only from dynamical point of view but also in studying the hability and
climatic variations of the Earth-like planet.

The paper is organized as following: first we derive a coringaquation
between the duration of the transit and some important petexsof the star
and the transiting body, then we solve this equation nurakyicAfter examin-
ing the solutions of this equation, we map the stability cttice of the system
assuming the presence of a known giant planet. Then we camuage lower
limits for the inclination and an upper bounds for the ecaeity of the transit-
ing planet depending on the eccentricity and the semi-naggisrof the known
giant planet.

2. A connecting equation between the orbital parameters
of the transiting planet

In this section we shall derive an equation between theapérameters of
the transiting planet, the star's mass, and the duratioheftransit from the
geometry of the transit.

Let us suppose that the star’s disc is a circle with a raéfiyand a planet is
moving in a front of this disc with an average velocity. If the duration of
the transit is denoted by and the lenght of the path of the transiting planet
d (see Fig. 1), the following approximation holds:

d
Vir =~ —. (l)
T

We note that according to Kepler's second law, the velocftthe planet is
changing during the transit (except in the case of circutbit), however this
change is negligible, if the planet orbits far enough the Sance the triangle

S
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in Fig. 1 is a pythagorean one, it can be written

d 2
From Equation (2) the lenght of the transit’s pdthan be expressed as
R2 — r2cos? 1, (3)
where, according to Fig. 2,
m = 7 COS1, (4)

where1 is the inclination (e.g. the angle between the orbital pland the
tangent plane to the celestial sphere), anslthe distance between the center
of the star and the planet.

star’s disc

o

R
d/2
path of the transit

Figure 1. The transit of a planet in the front of the stellar disc. Thaight sections denoted
by R, m, andd/2 form a pythagorean triangle.

By using the well known formula for:

. a(l —e?)

14+ecosv’

(5)

(wherea is the semi-major axis; is the eccentricity, and is the true anomaly
of the transiting planet), and Equations (1) and (3), theaye orbital velocity
of the transiting planetx;) can be written as

2
vy = %\/R2 - [M] cos?i . (6)

1+ ecosv

On the other handy; can also be approximated on the basis of the two-
body problem. In the coordinate systégn), in which the axes of the orbital
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Figure 2.  Side-view of the transit, whereis the distance of the planet from the star’s center
ands is the inclination of its orbital plane.
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Figure 3. The transit as viewed from above. At the mid of the trangits nearly equal tg).
The coordinate systelfg, n) is the rotation of the coordinate systém y) by w.

ellipse are on the ax€sandn, the components of an orbital velocity vector are
(see Murray and Dermott, 1999):

£ = —\/Esinv, (7)
p
n = \/g(e—kcosv),

wherep = a(1 — €?) is the parameter of the ellipse apd= k*(m. + m,),
m. andm,, are the stellar and planetary masses, respectively.l.g) denote
a cartesian coordinate system where thaxis is parallel to the line of sight
(e.g. the line connecting the center of the star to the okser¥rom Figure
3 it can be seen that the systéfn) is the rotation of the systertx, y) by
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w, which is the argument of the periastron of the transitiranpt. Thus in the
coordinate systerfi, y) formulae (7) transform as

i = €cosw—nsinw, 8)
y = fsinw+7'700$w.

From Fig. 3 it is clearly visible that the average velocityté transiting
planetuy can be approximated witl, which is the velociy of the planet at the
mid of the transit. (We note that this approximation fails lrge eccentricity
of the transiting planet.) Then by using the above approtonand Equations
(7) and (8) we find

vtr%y:—\/%sinvsinw+\/%(e+cosv)cosw. 9)

Studying again Figure 3, it is also true that at the mid of thagit
v+ w = 360°, (20)

thus the average orbital velocity of the transiting plaset i

vy = (1+ecosw). (11)

=

Combining Equations (6), (10), and (11) we obtain the folfayequation:

2 1—e2) 17
\/g(l—l—ecosw)—;\/Rz— [laiie)} cos?2i =0, (12)
e cosw

where the unknown quantities are the eccentriejtthe inclination:, and the
argument of the periastran. The other quantities, such as the semi-major
axis a, the mass parameter), the radius of the starH), and the duration

of the transit {) are known with certain accuracies already discussed in the
Introduction.

3. Solution and analysis of Equation (12)

According to the last paragraph of the previous sectionptileown quan-
tities in Equation (12) are the inclinatianthe argument of periastran, and
the eccentricitye of the transiting planet. Thus by fixed valuesipEquation
(12) can be solved numerically, and the, ¢) pairs of the solutions can be
represented as curves on the- e parameter plane.

In order to study the solutions of Equation (12), we give ffieealues for
the parameters in Equation (12). Let us assume that the m#ss wansiting
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planet is 1 Earth-mass, and it revolves around a 1 Solar-stassvith radius
R = 6.96 x 108 m, in an elliptic orbit characterized by = 1 AU, e = 0.1
being its inclinationi = 89.95°. Then we suppose that the direction of the
observation of the planetary transitis= 30°. It can be calculated easily that
in this case the duration of the transit ise= 0.483029 day.

05 ‘ — -
0.4t

03 r

eccentricity

02 r

0.1 F

i=89.89

0 50 100 150 200 250 300 350
argument of periastron

Figure 4.  Solutions of Equation (12) for different inclinations when= 0.488029 day.
The original solution, which results in the abowgis marked with a filled circle ab = 30°,
e = 0.1, ands = 89.95°.

By observing transits caused by the above planet, we canumeetir du-
ration 7 and periodl’, from which the semi-major axig can be calculated.
In our caser = 0.488029 day, and for different values afthe corresponding
w — e curves are plotted in Fig. 4. We show these curves only far0.5 since
we think that larger values efare unrealistic for Earth-like planets. We also
mark the realw, e) solution by a filled circle on the curve corresponding to
1 = 89.95°, but as we can see, there is no way to restrict efficientlyrifiriie
set of solutions. The only restriction is that the solutieas not be chosen
from the region above the — e curve corresponding to= 90°.

Equation (12) has an infinite set of solutions formed by pafifs, ) values.

If only the duration of the transit is known, it is not possiltb choose which
(w, e) pair represents the real parameters of the transiting plane

4. A possible confinement of the eccentricity of the
transiting planet

In this section we shall investigate the case when, besel@eivly discov-
ered planet, an already known giant planet orbits arounthdiséng star. The
presence of such a planet makes the problem non-integra8llbath ordered
and chaotic regions can be found in the phase space of thensy$t/e sup-
pose that the most probable orbital solutions of the trengsjilanets are those,
which emanate from the ordered regions of the phase spaaeorbital pa-
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rameters of the transiting planet, which would result inatltabehaviour are
unlikely, since in long terms the orbit of the planet couldumstable, there-
fore these solutions might be avoided. We expect that theepee of a second
(giant) planet r epresents a dynamical constraint redubi@finit set of solu-
tions of Equation (12) by giving an upper limit for the maximeccentricity of
the transiting planet. We shall also demonstrate that byystg the solution-
curves of Equation (12) together with the stability struetaf thew — e plane,
a lower bound for the inclination can also be determined. hatfollows we
shall investigate the stability in thes — e) plane within the framework of the
planar restricted three-body problem.

In order to map the stability properties of tie — ¢) plane we used the
Relative Lyapunov Indicator (RLI) (Sandor et al. 2000, 200%he initial w
ande values are chosen from the intervals [0, 0.5] andw € [0°, 360°] with
Ae = 0.025 and Aw = 2°. The initial value of the semi-major axis of the
transiting planet is always = 1 AU, while its true anomaly is calculated from
Equation (10) a® = 360° — w (see also Figure 3).

For each pair of the initiglw, e) values we assign the RLI of the correspond-
ing orbit calculated for 500 periods of the transiting plarthe RLI is small
(~ 1072 — 10~13), the corresponding orbit is ordered and stable. If the RLI
~ 10711 — 10~? the orbit is weakly chaotic. In practical sense this orbitldo
be (Nekhoroshev) stable for very long terms as well, howedvean not be
stable for arbitrary long time. Thus the regions charao¢etriby these RLI
values can already be the birth places of unstable orbitsit<Omaving larger
RLI ~ 108 — 1072, are strongly chaotic orbits, and they will be unstablerafte
certain time. In our stability maps the ordered regions amoted by light,
the weakly chaotic regions by grey, and the strongly chaeiipons by dark
shades.

In what follows we consider the cases where the parameteitsedfnown
giant planet having 1 Jupiter mass are the followiag:= 2.0 AU, ¢; = 0.1,
0.2, and0.3 respectively. We fix the angular elements of the giant plamet
A = w = 0° InFig. 5, Fig. 6, and Fig. 7 we show the dynamical structure
of thew — e parameter planes for increasing values of the eccentititiie
giant planet. In these figures we also plot the solution @ioféequation (12)
by usingr = 0.488029 day.

From Fig. 5 it can be seen that there are two upper bounds éoe¢hen-
tricity of the transiting planet depending on whether tlaasit occurs near the
periastron, or near the apoastron. If the transit is neapéhiastronv < 80°,
the upper limit of the eccentricity is < 0.3, since thev — e curves cross
the chaotic region around this value. If the transit woulggen at the apoas-
tronw € [180°,200°], the upper limit of the transiting planet’s eccentricity is
higher,e < 0.4. The real solution is marked (as a filled circle) on the curve
corresponding té = 89.95°.
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Figure 5. The stability map of thes — e parameter plane, when = 2.0 AU ande; = 0.1.
Thew — e curves for different are also plotted when = 0.488029 day.

Figure 6. The stability map of thex — e parameter plane, when = 2.0 AU ande; = 0.2.
Thew — e curves for different are also plotted when = 0.488029 day.

In Fig. 6, corresponding te; = 0.2, there are two upper limits of the eccen-
tricity of the transiting planet as well. Far < 80° the eccentricity is < 0.27,
for w € [150°,220°] the eccentricity i$ < 0.22. In this case a lower limit can
be given for the inclination toa, > 89.°85.

If the eccentricity of the giant planet is = 0.3, see Fig. 7 the maximum
upper limit of the transiting planet’'s eccentricity és< 0.18. However, in
this case there exists a lower lingit> 0.05 as well. If the transit would take
place around the periastron the correspondingnde values would result in
weakly chaotic orbits. A lower bound of the inclination indlcase is >
89.89°. Among the three possible values of the giant planet, thisrlavould
represent the most effective dynamical constraint for tita parameters of
the transiting planet, which are= 1.0 AU, e = 0.1, w = 30°, andi = 89.95°.
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Figure 7. The stability map of thes — e parameter plane, when = 2.0 AU ande; = 0.3.
Thew — e curves for different are also plotted when = 0.488029 day.

We have also investigated the cases when the semi-majoofatkis known
giant planet were smaller and larger tharAU. If «, is smaller, a smaller
ey is enough to result in an effective dynamical constraint.a;lfis larger,
the eccentricity of the giant planet should be larger as vegllan efficient
dynamical constraint.

5. Conclusions

The detection of Earth-like extrasolar planets by usingigcobased spectro-
scopic methods is beyond the present capabilities of oasenal astronomy.
In the near future there will be launched space instrumanth as COROT
and KEPLER which are devoted to observe such planets by trsingit pho-
tometry.

In this paper we addressed the question whether it is pessitdetermine
the orbital elements of Earth-like planets discovered bydit photometry if,
apart from the period, the duration of the transit can be oredstoo. We
supposed that the mass and the radius of the hosting stamiskiwWe derived
an equation, which connects the stellar and planetary magseduration of
the transit, the semi-major axis, the eccentricity, theiamgnt of periastron and
the inclination of the transiting planet. By fixing the inwdition, this equation
contains two unknown variables, the argument of periastrand eccentricity
e of the transiting planet. Thus the solutions for differemtlinations can be
represented as curves on the- e parameter plane.

In the last section of the paper we assumed that beside thsting Earth-
like planet a giant planet orbits around the star as wells @8ssumption is quite
reasonable if we accept the formation theories of planetgsiems supporting
the simultaneous presence of both rocky, Earth-like and@es Jupiter-like
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planets. Since the detection of giant planets is possiblenegisuring their
radial velocity by Doppler-effect, we assumed their olbitarameters to be
known. By using the framework of the restricted three-bodybfem, we in-
vestigated the influence of the known giant planet tathee parameter plane
of the transiting planet. We found that on tle— e parameter plane there
appeared chaotic regions as well, which in long terms mayltr@s unsta-
ble motion for the transiting planet. Assuming that chabgbaviour for the
transiting planet are unlikely, we could determine an ugipat for the eccen-
tricity, and a lower limit for the orbital inclination of thieansiting planet.

In a future work we plan to extend our studies by investigasgstemati-
cally the stability structure of théw — e) parameter plane for various values
of the giant planet's semi-major axis and eccentricity. c8ithe mass of the
hosting star is known only with a limited accuracy, we alsangio follow the
propagation of this error throughout the method presemteilis paper. In our
future investigations we intend to consider the cases oemm@ssive transiting
planets as well.
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Abstract In this article we examine, that terrestrial planets in&sotar planetary systems
can have stable orbits in the 1:1 mean-motion-resonanceRMMth a Jovian
like planet. In our stability study of the so-called Trojdanets in the habitable
zone, we used the restricted three-body problem with @iffemass ratios of the
primary bodies. The application of the three-body probldmowsed that even
very massive Trojan planets can be stable in the 1:1 MMR. Rt@rapproxi-
mately 145 extrasolar planetary systems with about 170efdamly 15 systems
were found where a giant planet is in the habitable zone. tmamerical stud-
ies we examine the orbital behaviour and the size of theestabie respectively
of extrasolar systems where the initial orbit of the gastias fully in the habit-
able zone. The investigation of either the initial mean aalgrM) or the initial
argument of perihek{), showed, that the variation af yield more stable orbits
than the variation of M.

Keywords: trojan planets — exoplanets — habitable zone

1. Habitable planets

Today we have only observational evidence of extrasolargitaof 7 earth
masses (Gliese 876 d) and larger. The size of such planetkaige for forma-
tion of life and only a few of these planets lie in the 'Habl@@one’ (=HZ').
That’s the reason why a study of dynamical stability of polesadditional ter-
restrial planets (planets with a size comparable to Easth)iypothetical one.
But what we can do is to ask, which dynamical configuratiomspassible to
host a habitable planet in the HZ of an extrasolar planetgstesn? From the
dynamical point of view, there are four possible configunasi for terrestrial
like planets in the HZ (shown in Fig. 1).

149
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Figure 1. Four different classes of orbits where possible terrdgitéets may exist.

1 The HZ is outside the giant planet (=OHZ): Most of the disred gas
giant (=GG) planets are located very close to their stanmRie dynam-
ical point of view, there may exist terrestrial planets vatable orbits in
the HZ and sufficiently small eccentricity over time scalasy, enough
to develop a biosphere.

2 The solar configuration (=SOL): When a Jupiter like planeves far
enough from its central star to allow additional planets ingwn stable
low eccentric orbits closer to the star inside the HZ.

3 The satellite configuration (=SAT): A terrestrial planeat orbits a GG
in the HZ (as the ones orbiting Jupiter, e.g. Europa) coule liae right
conditions to develop a biosphere.

4 The Trojan configuration (=TROJ): When the GG moves in thethble
region a terrestrial Trojan planet may move in a stable @imtind the
Lagrangian equilibrium points4 or Ls.

Menou and Tabachnik (2003) quantified the dynamical haititiabf extra-
solar planetary systems in general via simulations of thidiital dynamics in
the presence of potentially habitable terrestrial planité® OHZ and the SOL
configurations have been the subject of a number of invegiiga(e.g. San-
dor(2006), Erdi and Pal (2003), P&l and Sandor (2003), Dvetal. (2003a,
2003b and 2004)). If the gravitational zone of a GG overlajib that of a
terrestrial planet in the HZ, gravitational perturbatiangush the terrestrial
planet out of the HZ. For this reason, we focus our work on tyreadical
stability of the TROJ configuration, in which possible tetral planets have a
1:1 MMR with a GG. Nauenberg (2002) found a stable configanator mo-
tions in the 1:1 MMR, where the more massive planet has anslgiccular
orbit, while the smaller body has a high eccentric orbit.tRer investigations
of the TROJ configuration focused on Trojan planets in the Bidi(and San-
dor (2005)). We are mainly interested in Trojan planets hIMR with a
GG that moves fully in the HZ. The main goal was to see how mabit
(of the Trojan planets) of the stable region are fully in thé &fter the calcu-
lation. These stable orbits are a main requirement for ailles®rmation of
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life. Laughlin and Chambers (2002) considered the podsilaf two planets
ina 1.1 MMR as a result of an interaction with the protoplamgtaccretion
disc. We emphasize that the discussion of habitable regionsnd a host star
is an interdisciplinary one: astrophysics is involved, daese the spectral type
and the age of the host star define the HZ (e.g., Lammer eR@03]), atmo-
spheric chemistriy is fundamental when we consideringgikay habitability
(e.g., Kasting et. al. (1993)), and astrodynamics is ingydnivith regard to the
determination of the orbital stability.

2. Numerical setup

More than 170 extrasolar planetary systems were discovdrttasolar
planets catalogue maintained by Jean Schn&idg4 systems are binaries and
18 are multiplanetary systems. Only 10 single-star systeaus a giant planet
in the HZ and an initial eccentricity smaller than 0.3, whigihmportant for the
stability (see Schwarz, 2005 p.65). We selected in Tabl planetary sys-
tems, namely HD93083, HD17051, HD28185 , HD108874 and HB2{the
bold written), for which the initial orbit lies fully in the B. We studied their
size of the stability region by using direct numerical imeggns of the equa-
tion of motion. The other systems which lies only partly ie tHZ were also
investigated, see Schwarz et al. (2005a) and Schwarz (200B6bk integration
was carried out with the LIE-integration method — which usesdaptive step
size (Hanslmeier and Dvorak, 1984; Lichtenegger, 1984) thendynamical
model of the elliptic restricted three-body problem cotsis of the central
star, the GG and a hypothetical (massless) terrestriakplarhe integration
time was up ta.0° years.

2.1 Initial conditions

We have taken the following initial conditions for the testréal planet: first,
the semimajor axis of the massless planet (starting at ted zmimajor axis
of the GG) was computed for a grid witha = 0.003AU. The argument of
pericenterw of the massless planet extends fraft to 140° and has a grid-
size of Aw = 2°. The extension and the geometry of the stable region for the
Trojan planet of several extrasolar systems varies. Wegeh#ime number of
the calculated orbits for each system to reduce the caicnoléitne (the larger
the unstable region the more calculation-time were need@djing the inte-
gration time, the largest value of the eccentricite{z) of the hypothetical
Trojan planet was determined. The so called maximum edceptmethod
(=MEM) shows how much the orbit differs from the circular orfeor larger
eccentricities it becomes more probable that the astelads close encoun-
ters and collisions. The stability criterion for a Trojansythat the eccentricity
should not exceed e=0.5; this is good measure which weestasd compared
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to other definitions like crossing the line of syzygy ( aligemb of Sun, Jupiter
and the Trojan).

Table 1. List of all single GG moving in the HZ of their host stars, degimg on the spectral
type the host stars. Main parametetsst column: Name, 2nd column: spectral type3rd
column: mass of the sta#th column: the minimum mass of the giant planet).,,], 5th
column: distance (semimajor axis a[AU]) from the central séh column:initial eccentricity
of the extrasolar planetth column:extension of the HZ [AU], an@th column:partly inside
the HZ at the beginning (initial conditions) in [%] .

mass mass a HZ partly
Name Spec. Mol  [Mjup] [AU] e [AU] in HZ
[%]
HD93083 K3V 0.70 0.37 0.48 0.14 0.40-1.30 100
HD134987 G5V 1.05 1.58 0.78 0.24 0.75-1.40 58
HD17051 Gov 1.03 1.94 0.91 0.24 0.70-1.30 100
HD28185 G5 0.99 5.7 1.03 0.07 0.70-1.30 100
HD108874 G5 1.00 1.65 1.07 0.20 0.70-1.30 100

HD27442 K2IVa 1.20 1.28 1.18 0.07 0.93-1.80 100
HD188015 G5IV 1.08 1.26 1.19 0.15 0.70-1.60 100
HD114783 KO 0.92 0.99 1.20 0.10 0.65-1.25 50
HD20367 GO 1.05 1.07 125 0.23 0.75-1.40 76
HD23079  (F8)/GOV 1.10 2.61 1.65 0.10 0.85-1.60 35

3. Global results

The stability region around the Lagrangian points was stliéh the model
of the elliptic restricted three-body problem by many irtigegtions (e.g. Rabe,
1967, Lohinger and Dvorak, 1993 etc.). Furthermore, a studyarchal
(1991) was undertaken in the framework of the general thoslr problem
(wherems > 0%). These results were used to show the positions — in theestabl
zone (see Fig. 2) — of all extrasolar systems where the gasigiaear the HZ.
This is given in Table 1, whereu is equal to one earth mass. Therefore it is
necessary to define the mass parametifirough the equation

3
u:%+m2-m3+0<m2m7?3> 1)
which is used instead of the mass ratio in the elliptic rettd three-body
problem. The stability zone (Fig. 2 depending on the masarpeter,, and

the eccentricity show that all selected extrasolar systiiable 1 lie in the
zone of stable motion. Only HD141937 (partly in the HZ) whids a planet
with 9.7 Jupiter masses is close to the border (see Fig. 2hgthble motion.
Consequently all planetary systems with one planet in the&fZhave stable
Lagrangian pointsf{y andLs).
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We conclude that orbits of hypothetical Trojan planets vatemall initial
1 and e are stable. The stability analysis does not give aoyrirdtion about
the extension of the stable region around the equilibriuntpo A more de-
tailed answer can be given with the results of numerical kitians of each
extrasolar systems under consideration shown in the nexgpaph.

048
unstable motion
0,8
o 0.7
g 06
B 0,5 & HD 93083
g, i gtable motion o HD 155015
E 0'4-:" o HD 17051
i = HD 25185
i 1* + HD 105374
o + HD 2712
01 e . _
* partly in the HZ
0 ; , : :
L 0,m 0,02 003 004 0,05

Mass parameter .

Figure 2.  Stability zone depending on the mass paramet@nd the eccentricity.

4. Results

Table 1 shows the parameters of all studied sihgbdrasolar systems. The
six selected extrasolar planetary systems — printed inibdldble 1 — have one
GG lying at the starting positions fully in the HZ. Note thadrh the dynamical
point of view there is no difference to the other systems.

4.1 HD17051

HD17051 is a GOV star with one solar madg.,,,=1.03) which hosts a GG
of 1.94 Jupiter masses {#;,,,) on an eccentric orbit (€=0.24) with a semimajor
axis of a=0.91 AU. This system was calculated for 0.1 Myrssée how the
stability region shrinks — this is shown by the number of igtairbits — (see
Table 2). To get the number of stable orbits it was necessatigtermine the
value of emay after 0.1 Myrs (this newenay Of the stable region ranges from
0.06 to 0.32), as it is shown in Table 2. Newax means that we set the upper
limit for the Trojans eccentricity so that they are still imetregion of stable
motion (more details about the MEM are shown in Sec. 2.1).
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The results are shown in Fig. 3 and Fig. 4, where we can seevaxstruc-
ture which extends frony = 25° to 35°. The convex structure is getting flatter,
if the initial eccentricity is very small. After this convergion (well visible
in Fig. 4) the value okmay rises up to 0.32. Our calculations also revealed
that theemax Of the stable region was twice as large as that ofethe(shown
in Table 2), a result that illustrates how the size of thelstaggion and the
value ofemax depends om,. The numerical simulation shows that the stable
region extends fromv = 20° to 65° and the semimajor axis from a=0.89 [AU]
to 0.94[AU]. We can conclude that 17% or 286 orbits of the 168@ulated
ones are stable.

semimajor-axis [AL]

s
030
045
I 050
[ Lk
. 050

20 30 40 a0 60 70 =] a0

argument of pericenter [deg]

Figure 3.  This figure shows system HD17051 for a computation time oMyis. The light
region is the most stable whereas the dark region indic&i@stic motion.

4.2 Stability regions of HD93083 and HD27442

Both extrasolar systems have main sequence stars, but nikswpectra.
HD27442 has a large stable region, because theaggw(shown in Table 2)
of the Trojan planet is very small and lies fully in the HZ aftel Myrs (see
Fig. 6). The stable region of HD93083 which is smaller has langated
shape (see Fig. 4). That's the reason, because the GG islesgyto the star
(a=0.48 AU) and has a relatively large initial eccentridigz0.14) shown in
Table 1. The newax (See Table 2) of the stable region go up to 0.26, but
nevertheless the orbits lie 96 percent in the HZ.
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Figure 4.  Shows a 3D depiction for the system HD17051. A large MEM iaths unstable
motion.

Table 2. List of all results for four of the systems listed in Table lhigh illustrates the ex-
tension of the stable region of the Trojan planets after OyfisM 1st column: name of the
investigated systen2nd column:inital eccentricity of the GG3rd column: new emax Of the
stable region4th column:number of the stable orbits vs. the calculated &itle,column:min-
imum of the perihel with the newnax, 6th column:maximum of the aphel with the newhay,
7th column: partly in the HZ [%] after 0.1 Myrs. The number of the calcelhtorbits were
changed, because of the different geometry of the stablengg

System €ini new Number of min. of max. of  partly in
emax stable orbits  the perihel the aphel the HZ
/calc. orbits [AU] [AU] [%]

HD93083 0.14 0.00-0.26  318/2580 0.36 0.61 96
HD17051 0.24 0.06-0.32  286/1800 0.62 1.20 87
HD28185 0.07 0.02-0.19 555/1800 0.83 1.23 100
HD108874 0.20 0.11-0.30 421/2000 0.76 1.38 87
HD27442 0.07 0.00-0.19  360/2000 0.96 1.40 100
HD188015 0.15 0.00-0.25 684 /2250 0.89 1.49 100

4.3 Stability regions of HD108874 and HD188015

From the examination of HD108874 and HD188015 - both are rsain
guence stars (G5) - followed that the Trojan planets of thes@@ mainly
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Figure 5. System HD93083 for a computation time of 0.1 Myrs. The ligigion is the most
stable whereas the dark region inidcates chaotic motion.
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Figure 6. System HD27442 for a computation time of 0.1 Myrs. The ligigion is the most
stable whereas the dark region indicates chaotic motion.

in the HZ with a newenax (see Table 2) not higher than 0.29. The results are
shown in Table 2 or Fig. 7 for HD108874 and Fig. 8 for HD18801Lbe results
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show that the system HD108874 has a large stable regioniesubrily partly
in the HZ, because the nemx is to large. Whereas HD188015 has a large
stable region which lies fully in the HZ. We investigated jarolike motion in
10 single planetary systems where the initial eccentristiyot larger than 0.3
and the gas giant lies partly or fully in the HZ. Than we seddd systems,
where the gas giant lies also mainly in the HZ. Numerical $atiens show,
how much orbits of the Trojan planet lie in the HZ after an gnégion time
of 0.1 Myrs. That happens if the newhax continues (during the integration)
very small so that the stable region in the HZ becomes vegelawe found
out that from the six selected extrasolar systems only texé@solar systems
are completely inside the HZ (see Table 2), but only two ofiti@ave Sun like
spectra.

semimajor axis [AL]

. 02
03
o4
0a
G
o7
I 08
Rkl

20 30 40 50 B0 70 =] a0 100

argument of pericenter [deg]

Figure 7.  Stability region for the system HD108874 for a computatiametof 0.1 Myrs. The
light region is the most stable whereas the dark region atdgchaotic motion.

5. Influence of the orbital elements M andw

In the last chapter the size and structure of the stable zZoeesinvestigated.
This was done by the variation af, but former investigations (see Schwarz
2005a and Schwarz et al. 2005b) used the variation of M. Nowane&ble to
compare the variation of this two parameters and show iktlieany differ-
ence. A variation of of M changes the location of the Trojaiereas, if we
use the orbital element we change the location of the Trojans ellipse. Table 3
shows the calculation of the four extrasolar systems. knttdle we compare
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Figure 8.  Stability region for the system HD188015 for a computatiometof 0.1 Myrs. The
light region is the most stable whereas the dark region &tdgchaotic motion.

the number of stable orbits for M and It is well visible, that the number of
stable orbits is larger fav than for M. This can also be seen in the ngwx
of the stable region. Newax has two values,because the eccentricity of the
stable region is not homogeneous (Table 3 shows two valeagdper and the
lower limit of the newemay). Therefore we have an example HD17051, were
the Fig. 3 and Fig. 4 shows how the nepyy is distributed.

Now | want to present the interaction of the initial M vs. théial w (shown
in Fig. 8). The comparison of both orbital elements was donéhe extrasolar
system HD17051 for an integration time of* years (initial conditions see
Table 1). Thev and M extends from° to 360° and have a gridsize dfw = 4°
andAM = 4°. The first thing to notice is that in Fig. 9 we have two stable
diagonal regions. The left region (goes fram= 275° to M=275°, the width of
the stable region is approximately betweef5#) shows thel; region and the
right one (w = 50° to M=50° the width is also +25°) that of L4. There are also
two small stable regions in the left lower corner and in tlghtiuper corner,
which belongs to thé 4 and L5 regions. Another investigation of the extrasolar
systems (HD 28185) shows that the stable regions(e§. M) depends on the
mass of the gas giant (HD28185 has a very massive gas fiapt = 5.7)
and the eccentricity of both (Trojan planet and gas giantjis Thvestigation
(shown in Fig. 10) was undertaken for a smaller gridsizedaf = 2° and
M=2° and also for an integration time @b* years. For higher eccentricities
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the continous stable region will splitted in to two islanded Fig. 10, lower
panel). We can conclude that there exist for a mass of theigas @f about
M;,, = 6 and an initial eccentricity higher 0.15 no continous staklgion.
The fact that we have a linear continous stable region foL #iggangian points
give us the possibility to depict and M in a simple ratio. This could be
used for future calculations to vary both orbital elemeatsu¢d M) during the
integrations.

Table 3. Results of four systems listed in Table 2, which illustrétes extension of the sta-
ble region of the Trojan planets after 0.1 Myrs for the véoiatof the mean anomaly and the
argument of perihelionlst column:name of the investigated systeBmd column:inital eccen-
tricity of the GG,3rd column:new emax Of the stable region for the mean anomdlh column:
new emax Of the stable region for the argument of the peribéh column:number of the calcu-
lated orbits 6th column:Nr. of stable orbits for M/th column:Nr. of stable orbits fotw, The
number of the calculated orbits were changed, because aliffeeent geometry of the stable
regions.

System eini new new Nr. of Nr. of Nr. of
€max Emax calc. stable orbits  stable orbits
of M of w orbits for M for w
HD17051 0.24 0.4-05 0.06-0.32 1800 73 286
HD28185 0.07 0.1-0.2 0.02-0.19 1800 161 591
HD108874 0.20 0.3-0.4 0.11-0.29 2000 159 421
HD27442 0.07 0.1-0.15 0.00-0.19 2000 926 1259

M [deg]

Figure 9.  Stability region for the system HD17051 for a computationetiof 10* yrs. The
light region is the most stable whereas the dark region atdgchaotic motion.
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Figure 10.  Stability region for the system HD28185 for a computationeiof 10* yrs and
different initial eccentricitieseini = 0 (upper Figure)eini = 0.07 (middle Figure) ancini =
0.15 (lower Figure). The light region is the most stable wherbasiark region indicates chaotic
motion.

0. Discussion

We investigated Trojan like motion in 10 extrasolar planetsystems by
using the restricted three body problem. The GG of the ssdesystems are
partly or fully in the HZ and the initial eccentricity dont exed the value of
0.3. We checked the extrasolar sytems - by using the studlieichal - in
the 1:1 MMR for the selected systems, where the gas giant snogar the
HZ. We can conclude that only one of the investigated systesme no stable
region (HD 141937) and that the stable region of the Trojangls are getting
smaller with larger values gf and e (see Fig. 2).

Numerical simulation were done to investigate the dynahstability of
six extrasolar planetary systems, which lie fully in the Hhe MEM were
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used to detemine the stability of the Trojan orbits. We finttbat three sys-
tems dynamical lie completely in the HZ after a calculationet of 0.1 Myrs
(HD28185, HD108815 and HD27442), but only two of them have $ke
stars (HD28185 and HD108815). The other three systems edstdbe can-
didates for habitable Trojan planets, because the stables die 87 percent
(HD17051 and HD108874) and 96 percent (HD93083) in the HZother
part of this work was to investigate the interaction, if weashe the initial
mean anomaly (M) or the initial argument of perihel) during the calcula-
tion. The comparison of both orbital elements was done ferdktrasolar
system HD17051 and HD28185 for an integration timé@fyears. We could
find out that, if we vary thev there are much more stable orbits than for M.
Because of that, future calculations should include bobitalrelements, to
become a more realistic simulation. Therefore furtherwdatons should be
done to analyse the stability regionwfand M for different masses, eccentric-
ties and inclinations.
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Notes

1. i.e. the region where possible terrestrial plantes cae (@) liquid water on the surface and (b) a
stable atmosphere shown in Fig. 1

2. The Extrasolar Planets Encyclopedia at http://www.obpencycl/encycl.html

3. A thrid body, which always remains in the orbital plane loé fprimaries, feels their gravitaional
attraction, but does not influence their motion, becausenthes is very small

4. that means only one planet in these extrasolar systenmeverk
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SYSTEMS — THE SITNIKOV PROBLEM

Tamas Kovacs
Department of Astronomy
Lorand E6tvds University
Pazmany P. stétany. 1/A
H-1117 Budapest, Hungary
t.kovacs@astro.elte.hu

Abstract It is well known that already a 2 degrees of freedom dynanggatems chaotic
behaviour appears. To examine this phenomenon the Sitpilallem is a very
good example which is a special case of the restricted thoeg-problem. In
this paper we investigate the changing of the phase spagsse due to the
variation of the Surfaces of Sections.

Keywords:  Sitnikov problem — Poincaré SOS — resonances

1. Introduction

The investigation of dynamical systems in the past 50 yehosvs that
chaotic behaviour appears not only in difficult, many degrefefreedom sys-
tems but in simple configurations as well. Therefore one efrtiost relevant
tasks is to study these simple dynamical systems to understaaos, and on
the other hand it is a good starting point to investigate nddfeult problems.

One of the simplest and most interesting systems in celesBahanics is
the Sitnikov problem. Essentially, it is a special case ef tbstricted three-
body problem. Namely there are two equal massgsandms revolving in
Keplerian orbits around each other, and a third masslesg/aganoves on an
axis perpendicular to the plane of the primaries through trarycenter.

Mac Millan [6] showed that in the circular problem, when thengaries
revolve on circular orbit, the problem is integrable anddbleition is expressed
by elliptic integrals. The motion of the massless body ised#nt when we
allow the two primaries to move in eccentric orbits. In thése quasi-periodic
and chaotic orbits appear beside the periodic ones. Themohf the problem
was first given by Sitnikov in 1960 [9], after that many authexamined the
existence of periodic orbits in this configuration. The firgtpping model was

165
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derived by Liu and Sun [5], who showed that even for small etagties the
phase space becomes very complex. Perdios and Markellagu@ied the
stability and the bifurcations in the Sitnikov problem. Dak [1] investigated
numerically the problem by using Poincaré’s surfaces ofi@ec Martinez
Alfaro and Chiralt [7] found that for certain eccentric&iéhe fixed point =
Z = 0 in the center becomes unstable. Kallrath et al. [4] expldnedphase
space in detail laying emphasis on resonances. For smalhgimities Hagel
[3], Faruque [2], and Lhotka [1] applied perturbation meth@nd gave an
analitical approximation to the problem.

In this study we investigate the phase space structure ffareint initial
conditions, and for different positions of surfaces of g (SOS) to show te
interesting structure.

2. Equation of motion

As mentioned above, we investigate the motion of a massledg Wwhich
moves along a line perpendicular to the plane of the priraaheough their
barycenter (Fig. 1). By introducing suitable units we caitemthe equation of
motion. We choose the total mass of the primartas &ndms) as mass unit,
the rotating period equal tr, the semi-major axis of the orbit of the primaries
as distance unit, so the Gaussian constant becomes 1. Taegukation of
motion of the massless body is

—z, (1)

where

7“:\/327-1-221 R=1—-ecosE. 2)

R is the distance between the primariesis the distance of the massless
body from the plane of the primariesis the eccentricity, and’ is the eccentric
anomaly, which depends on the time according to Kepler'sigoj:

t—T=F—esink. 3)

The r = 0 phase constant corresponds to the pericenter passage ét
Since the problem is only one degree of freedom, we can int@dhe true
anomalyv as for independent variable instead of the time. (See [4].)

3. Structure of the phase space

We studied the Sitnikov problem for different initial cotidns. On the phase
portraits we plotted many trajectories corresponding fiidint initial condi-
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Figure 1. The Sitnikov problem.

tions. The set of initial conditions wag = 0.15 — 1.8 with Az = 0.05, and
the initial velocities were = 0 in all cases. We chose the integration time to
be 10000 periods of the primaries.

The circular case is equivalent to the two center problemc¢hwvvas solved
already by Euler in 1764.

In the eccentric case we have more various phenomena in ése gpace. It
is well known that increasing the parametehe structure of the — Z space is
also changing (Kallrath et al., [4]). For initial condit®rclose to the plane of
the primaries the solutions are quasi-periodic motionsasgnted by invariant
curves on the surface of section (Fig. 3). However, smahig$ appear for
particular initial distances outside these invariant esrv These formations
correspond to resonances with the primaries. The masspegsdscapes from
the system in the region between the islands (Fig. 3).

In this paper we investigated the changes of the phase poxriaen the SOS
are not in the pericenter. We calculated the motions for fmsitions of the
Surfaces of Sectiong) = 45°, 90°, 135°, 180°. Figures 4—6 show the results.

In Fig. 4 the eccentricity of the binary was 0.1. It can be s the 2:1
mean motion resonance (the two islands in Fig. 3) remaind tases, only
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Figure 2. e = 0.4 andvy = 0° (pericenter passage). The islands outside the invarianésu
correspond to the 1:1 and 2:1 mean motion resonances. Betiveéslands there are escaping
trajectories. The horizontal axis means the distanceioto the primaries plane, the vertical
axis the velocity.

the shape of the islands has changed. For example in thevgasel5° the
islands moved from their initial positions (Fig. 4 top left) addition, chaotic
motion appears close to the separatrices as well. In Figtine #ottom right
panel shows a quite distinct picture, but the islands areeth®n the fourth
panel the structure of the phase portrait is again symnaétric

Fig. 5 shows the islands that correspond to 2:1 resonan€eG)e= he inner
region of the phase plane has changed, because of the higlestiécity. The
invariant rotational curves disappeared, and the sizeeofdh decreased due
to the growing of the perturbation parameter.

The four panels in Figure 6 wheete= 0.6 are similar to those of Figure 4.
We can see the same behaviour (the rotation of the islanddjfferent SOS.

4. Concluding remarks

We investigated the phase space of the Sitnikov problemifi@reint initial
conditions. Four different positions of the SOS are ingzggéd which unveil
the interesting structure of the phase space. There aredclmgves on the
surfaces of section corresponding to quasi-periodic ®réditd small islands
which mean resonances. These small islands break up wittngahe eccen-
tricity, or higher order resonances appear. It is importamiote that varying
the positions of the surfaces of sections the topology ofptiese portrait do
not change. The islands remain they only turn round the eetfteir area is
constant in time.
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Figure 3. e = 0.1. The figures show that the periodic orbits and the tori arotmedntturn
round the centre while the position of the surface of secisochanging. The x-axis is the
distance to the primaries plane, the y-axis is the velocityng. The panels correspond to
different positions of SOS: Top left panehy = 45°, top right panel:vy = 90°, bottom left
panel:vg = 135°, bottom right panelvy = 180°. We can see that the islands do not disappear,
only their form has changed.

0s
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Figure 4. e = 0.6. After a critical value of the eccentricity. = 0.54325 the stable fixed
point becomes unstable. In this moment two stable islangsamext to the original position
of the periodic orbit. The x-axis is the distance to the priegplane, the y-axis is the velocity
of ms.
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Figure 5. The eccentricity of the primaries is 0.6. In this case thaiiiant curves are confined
to a smaller part of the phase portrait as in the ease0.15. The panels show the moving of
the islands that correspond to the 2:1 resonance. Top la#tlpa, = 45°, top right panel:
vo = 90°, bottom left panel:vg = 135°, bottom right panelwo = 180°. The x-axis is the
distance to the primaries plane, the y-axis is the velodity..
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Abstract

Keywords:

Several methods used in celestial mechanics require t@ swhiinary differ-
ential equations (ODESs) and also derived equations likealized ones. Lie-
integration is known to be one of the fastest ODE-integsatord it is widely
applied in long-term investigations. However, an incoieeoe of this method
is that auxiliary recurrence relations must be deduced wisidifferent for each
problem.

We present a lemma which can be used to derive such recurrelations
almost automatically for the linearized equatidghnghe relations for the original
ODEs are known. This lemma is then applied to the equatiotisecflassicab-
body problem. The knowledge of such relations may imply othaos detection
methods; some concerning (and preliminary) results acefakssented.

Numerical integration — Lie-integration — Linearized etjoias

1. Introduction

The integration method based on the Lie-series ([1]) is lyideed in ce-
lestial mechanics (see [2] and articles refering to it). Bhsis of this method
is to generate the coefficients of the Taylor expansion oktietion by using
recurrence relations. Let us write the differential equato be solved as

wherex is anR — RN andf = (f1,..., fv) is anRY — R function. Let
us also introduce the differential operator
0
i = ) 2
oz, 2)
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and the derivation

" 0
Ly ::Z;fia—mi = fiD;. 3

The latter is known as the Lie-derivation which is also aat#htial operator:
it is linear and Leibnitz’s rule stands for it,

Lo(ab) = CLLQ(b) + bLo(a). (4)

It can easily be proved that the solution of Equ. (1) at a gimstancet + At
is formally

x(t+ A) = exp (At - Lo) x(t), (5)
where
A AR
exp (At Lo) = 1 Lo (6)
k=0

Hence, the Lie-integration is the finite approximation (oghe order ofM)
of the sum in the right-hand side of Equ. (6), namely

N

k
;w+Aom<Zf%¢me:§:% (Lx®). @

k=0

The proof of Equ. (5) and other related properties of thedaevation can be
found in [2].
2. Linearized equations

For numerous chaos detection methods the knowledge of kinggosoof lin-
earized equations is required. Let us again write the @iffeal equation as

&; = fi(x). (8)
The linearized equations can be written as
n a )
=3¢, ©)
m=1

Using the above conventions (see Equ. (2)) it can be reemrds:

& = EnDm fi. (10)
Let us introduce the differential operator
0; = i (11)

3



Recursive formulae for the Lie-integration of linearizepiations 175

Thus the coupled system of equations (both the original badinearized) is
jji = Jis
. f (12)
gi = memfz

Using the differential operators defined in Equ. (2) and E#jil), one can write
the Lie operator of Equ. (12) as

L=Lo+ Ly = fiD; + & D fi0;. (13)

Lemma. Using the same notations as above, the Lie-derivatives cn
be written as
L, = & Dy L vy, = & Dy L x. (14)

Proof. Obviously, Equ. (14) is true far = 0:

hence
EmDin L%k = &bk = & (16)
Let us suppose that it is true for &ll< j < n and calculate thén + 1)th
Lie derivative of¢y:
L' = L(EmDpmL"zy) =
= (fiDi +&;D; fi0;) (§mDm L"wy) =
[iDi&m Dy L, +
+&(D; fi)[0imDm Lz + Em Dm0 L™ ). a7)
Here the last term¢(, D,,,0; L™ x},) cancels, becausg, andL"z forall0 <n
do not depend o&. So:
L' = f;Di&m DLy + &(Dj fi) Di L™z, =
= &mfiDmDiL"xp + (D fi)(Di L™ xy) =
= & (fiDm + D fi) (DiL"xy,) =
= &mDn(fiDi)(L"xy,) =
= &nDp L(L"xy) = & D L™ May, = &, D Ly g (18)

Here we have used the Young'’s theorem:
and Leibnitz’s rule,

D (fiDi) X = D fi(Di X) = fi(DinDi X) + (Di, fi)(D; X), (20)
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where X can be any function aof, in Equ. (18)X = L"x;. Thus Equ. (18)
is the same relation fon + 1, as Equ. (14) fom. Continuing the scheme
described above, the relation Equ. (14) can be proved fqrasiitive integer
values ofn.

3. Equations for the two-body problem

The recurrence relations for the Lie-derivatives of theatigms of motion
of the N-body problem can be found in [2]. Here we present the eqositio
for the two-body problem with almost the same notations. usetletone the
relative coordinates and velocities by= (71,72, 73) andw = (w1, wa, ws),
respectively and introduce the following variables:

p o= [r|=y/ri+ri+ri, (21)
¢ = p (22)
A = rywy + rowy + r3ws = rw;. (23)

The total mass of the systemig + m. Using these notations, the equations
of motion are

w; = —G(M +m)pr;.
(HereG = k2, the gravitational constant.) The differential operatbrsand
A,; are defined as
0

Dz‘ = 2
0
A; , 2
B, (26)
and the Lie-operator of Equ. (24) can be written as
L() = ’LUZ'DZ' — G(M + m)gbmAZ (27)
It can be proved easily (see [2]) that the recurrence relative
Ly, = LMw;, (28)
A = Y (Z) Lrr LV Fa;, (29)
k=0
L"Mw, = —G(M+m)) (Z) LroL™ Fr,, (30)
k=0
L™ = p 2> FuL FeLFA, (31)

k=0
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where

Fop = (=3) (Z) +(-2) (k Z 1>. (32)

Using the lemma Equ. (14) the recurrence relations for thealized equa-
tions of Equ. (24) can be derivesithout knowing these equations explicitly.
Let us denote the linearized variablesgwandn; (respecting to; andw;) and
introduce

E o= (& m), (33)
D;

o (2) o

ED = ED; =&D;+ A (35)

Since the right-hand sides of the equations Equ. (28) — E2fL). dre only
bilinear in the Lie-derivatives of;, A, w; and ¢, using Leibnitz’s rule the
recurrence relations fa;, w; and the auxiliary variableSD¢ and=DA can
be calculated automatically:

L' = L'y, (36)
EDL'A = go <Z> (LF& L w; + Lrr, L7y,
Iy = —G(M+m) Zn: (Z) (EDLFo)L"ry + LroL e
EPL"¢ = —2p_2§iriLnf1:<Z +
+p2 Zn: Fo [(EDL”‘%)L’% n L”‘%(EDL’“A)] .
k=0

For the initialization of the recurrence method, the vallEDL ¢ = =ZD¢

has to be known:
ED¢ = —3p & (37)
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Abstract In this article four chaos indicators were compared usimgftamework of the
2D standard map. These methods, namely the LCE, FLI, RLI akid Say
provide a global picture of the evolution of the mapping. iUnbw a de-
tailed comparison of these methods have not been perforiéslimperfection
should be supersede. This is the aim of the paper.

Keywords:  Chaos detection methods — Standard map

1. Introduction

The problem to separate ordered and chaotic motion in dysarsystems,
especially in one with many degrees of freedom, is a fund#ahéask in sev-
eral area of modern research. In order to determine the tiyae mitial con-
dition in the phase space one needs fast and reliable toléseTtools are ex-
tremely useful in those cases when the inspected dynanyistdra has more
than two degrees of freedom and therefore it's phase spaebeaexplored
in a direct way or the classical method of Poincaré surfageocfions can not
be applied.

The mathematical foundation of the theory of Lyapunov ctigrstic ex-
ponents (hereafter LCE) arose progressively in the libeeatThe use of such
exponents dates back to Lyapunov [9], but was firstly apigfiL1] to char-
acterize trajectories. In his paper Oseledec provides ergeand simple way
to compute not only the largest, but all the LCEs. The first edoal char-
acterization of stochasticity of a phase space trajectotgrims of divergence
of nearby trajectories was introduced by the classical pai@]. They found
that two orbits initially close diverge either linearly oq@nentially depending
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Table 1. Enumeration and classification of the methods.

analysis of the orbits analysis of the tangent vector

1. Poincaré surface of section 1. Lyapunov characterisgioments (LCE) [9]
2. Frequency analysis method (MFT)2. Generalized Lyapunov indicators (GLI) [3]
(8]

3. Low frequency power spectra [16] 3. Spectra of stretchingbers [14]

4. Sup-map method [8] 4. Spectra of helicity and twist an{¢s

5. Spectral analysis method (SAM) [10] 5. Fast Lyapunovdattirs (FLI) [4]
6. Spectral distance [15]
7. Mean exponential growth of nearby orbits
(MEGNO) [1]
8. Relative Lyapunov indicator (RLI) [12]
9. Smaller alignment index (SALI) [13]

on whether the initial points lie in an integrable or in a $t@stic region of the
phase space.

In the last three decades much work, both analytical and ricatéave been
performed to investigate the chaotic properties of classignamical systems.
In addition to the elaborated theory of LCE several new naghuave been
developed in order to establish the true nature of an orlfigrshortest possible
timespan. These methods are based on the analysis of th& ormn the time
evolution of the tangent vector i.e. the solution of the dineed equations of
motion. Accordingly the methods can be classified in two gsoisee Table 1).

In this paper the LCE, the FLI, the RLI and the SALI methodd Wwd in-
vestigated and compared in the framework of the 2D standag defined by
the

Tit1 = T+ Y,
mod 27 (1)
Yir1 = yi — Ksin(z; +y5),

equations, wher& > 0 is the non-linearity parameter. Throughout the paper
the K = 0.3 case is considered. For this value of the non-linearity rpatar
the complete phase space of the system and the vicinity dfyiherbolic point
(m,0) is depicted in Fig. 1.

In Section 2 the methods are shortly described. In Sectitie 3peed of the
methods are presented and compared, and also their deperalethe initial
tangent vectot is discussed. In Section 4 the results are summarized.
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Figure 1. The phase space of the standard mapifor= 0.3. The vicinity of the hyperbolic
point is enlarged to visualize the initial condition of theakly chaotic orbit.

2. Methods: LCE, FLI, RLI and SALI

Let us briefly review the definition of the different method&he definition
of the largest LCE for an initial value problem or mapping

dy(t
% = f(t,y), ¥(0)=yo, 2)
yitr = M(yi), ¥Yi=o = Yo, 3)
is given by
: e _
LCE = 1 ] =1 t,v0,&0), 4
A PR )] Jim (%, yo, &) (4)

wheref(t) is the solution of the first order variational (i.e. line&d) equations
and the functiony(t, yo, &) measures the mean rate of divergence of the orbits.
The linearized equations are:

agt)  of(ty) B
Eiv1 = 81\27(%)&, §i=0 = &o- (6)
Yy

The value of LCE reveals the sensitivity of the given tragegtto the initial
conditions. The problem of the LCE is that it is defined as atlifihough
the largest LCE can be calculated up to a (very) large timeut the limes
ast tends to infinity cannot be evaluated numerically. Theeefihre func-
tion~(t, yo,&o) is called the Lyapunov characteristic indicator (heredftel),
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which is a finite estimate of the LCE. Thus the evolution of /Cty, £) is fol-
lowed up and we plotogL Cl versuslog t. If the curve has a negative constant
slope, the trajectory is ordered; if it exhibits an inflentiof the slope, which
comes close to 0 and the function converges to a certain ,vHlaeorbit is
chaotic.

The FLI was introduced as the initial part (up to a stoppimgett,) of the
LCE’s computation:

FLI(£(0),y0,ts) = SUp & @I, ()
j=1,....n

wheren is the dimension of the phase space. To determine the FLI biea g
orbit one has to follow the evolution of tangent vectors, which initially span
an orthogonal basis of the tangent space. The FLI tendsadrzéoth ordered
and chaotic regions as the number of iterations (in the dasaps) or the time
(in Hamiltonian systems) increases, but on completelyerkffit time scales
which makes it possible to separate the phase space.

The RLI was introduced as the difference between the LClgvofinitially
nearby orbits:

RLI(£(0). y0.42) = 7ILCI(E(0) yo. 1) ~ LOI(E(0). yo + Ay, )], (®)

whereAzx is the distance in phase space between the two orbits.

The basic idea behind the SALI method is the intoduction ofrfgpole quan-
tity that indicates if a tangent vector is aligned with theedtion of the eigen-
vector corresponding to the maximal LCE.

In order to check the directions of the vectors, the evolubbtwo tangent
vectors are followed. The parallel and the antiparallegratient indices are
respectively defined as

d = 1|&(t) = &M@, dy = [[&(t) + &)
The SALI is defined as the minimum of the indices:
SALI(t) = min (dy,d_). 9)

SALI tends to zero when to orbit is chaotic, and to a non-zersitive value

when to orbit is regular. In the special case of 2D maps, SAnds to zero for
every initial conditions but follows completely differetine rates for ordered
and chaotic orbits.

3. Efficiency and dependence

Both the efficiency and the dependence was study in the céserddifferent
kinds of orbits. The initial conditions are given in Tablete corresponding
orbits are plotted on Fig. 1.
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Table 2. Classification of the orbits and initial conditions.

Orbit
Ordered Chaotic
non-resonant resonant strongly weakly
(1;0) (0;2.15)  (3.14;0) (3.1024048;0)

First the number of iterations needed to establish withag®tst the nature
of an orbit was determined. An orbit can be classified as ediéregular) or
chaotic. An ordered orbit can be divided into two subclassean-resonant and
resonant. An orbit is non-resonant, when there does nat &xth linear com-
bination of the frequencies of the motion which vanishesentise the orbit is
resonant. The chaotic orbits may be further classified, rdaugly to the rate
of divergence of nearby orbits. In this context, one can lséd@ut strongly
and weakly chaotic orbits. If two initially nearby trajedges diverge fast, the
orbit is strongly chaotic, if the divergence is slow (conipgrto the previous
case), we speak about weakly chaotic or sticky orbit. The@lstassification
is presented in Table 2, where also the initial conditionthefdifferent orbits
for the standard map are listed.

In Fig. 2 the time evolution of the four indicators are pldtter the above
mentioned different kinds of orbits. The stopping time wetsts10? iterations.
In the case of FLI, RLI and SALI an additional stopping ciidewas used:
whenever the FLI, RLI or SALI reacheth?®, 1072° or 10716, respectively
the computation was stopped.

Between 1 and some times 10 iterations none of the methodpabte to
establish the type of the orbit: all four curves are overiagpeach other in-
hibiting the classification. At the earliest at 100 iteradhe strongly chaotic
orbit can be separated from the ordered one, but with céyttlie classifica-
tion can be done at 1000 iterations.

In the case of LCI, FLI and SALI the indicator correspondingte weakly
chaotic orbit (dotted line) follows exactly the curve bejorg to the strongly
chaotic orbit (solid line) for the first 10 iterations. Afteards the weakly
chaotic curve essentially follows the curves correspapdmthe ordered or-
bits for approximatelyl0° iterations. In the case of LCI the classification is
only possible after approximately® iterations, when the curve has a turning
point, and its slope becomes zero. It is worth noting, thiatrafomel 0 itera-
tions the LCI suddenly jumps form 1.210~° to 6.03x 103, than it climbs to
2.55x10~2 which is very close to the value belonging to the stronglyotica
orbit (3.45<10~2). This is a numerical evidence, that both orbits originate i
the chaotic domain. In the case of the FLI approximateli@, whereas in
the case of the SALI aboutQl0° iterations are needed for the assignment.
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In the case of the RLI, the weakly chaotic curve does notolmy other,
but it wildly oscillates around0~'2. Between 100 and 1000 iterations it over-
laps with the ordered curves, beyoihtf it goes close to the strongly chaotic
curve. The classification is possible aftéf iterations.
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Figure 2.  Variation of the Cls with the number of iterations for foun&ls of orbits of the
standard map. The dotted curves correspond to the weakbyicluabit.

A careful examination of the curves in Fig. 2 allows one tdidguish also
between resonant and non-resonant motion. Although thesuorrespond-
ing to a non-resonant and a resonant motion are separated dase of FLI,
RLI and SALI, the oscillations prevent definite distinctibetween the two
cases. Therefore, following the idea of [5], the definitians replaced by their
running average

CI(t) = =~ > CI4, (10)
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whereCI denotes one of the methods aidis the width of the running win-
dow. In the followingN = 50 was used.

In Fig. 3 the running average of the indicators are shownhércase of LCI
and SALI the two curves can not be distinguished from eachrpthhilst the
FLI and RLI curves are well separated after 100 iteratiohgppears clearly
that usingl*:L\I(t) and ﬁ\LI(t) resonant and non-resonant motion are clearly
separated. We note that the corresponding lines appear parb#el. This
averaging technique does not influence the behaviour ofnitliedtors in the
case of chaos.

10° 10" 10% 10° 10* 10° 10° 107 108 10° 10° 10" 102 10° 10* 10° 10° 107 10% 10°
10° 20 T T T T T T T =T
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Figure 3.  Variation of theé\I(t)s with the number of iterations for four kinds of orbit of the
standard map.

It is obvious, that the methods are sensitive to the initie¢alion of the
tangent vectog(0). To quantify therefore the methods’ dependence on the
direction of£(0), the tangent vector is rotated, and the indicator is caledla
up to several stopping times. This dependence is confirmE@jird in which
the values of the Cls are plotted against the angléor the resonant, non-
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resonant and chaotic orbits for 1000 iterations. This the angle between
£(0) and the (1,0) vectorif-axis). From Fig. 4 it is obvious that these values
are far from being constant when varying the anglén order to plot all four
curves together, a normalization was performed, i.e. thealtles were divided
by their maximum value (see Table 3).

The normalized curves have extremum at the samenhich is a natural
consequence of that, that all four methods are based on thetiem of the
tangent vector. The LCI and RLI are periodic withsince these methods are
based on on&(0), while the FLI and SALI are periodic withr /2, because
they are based on two tangent vectors which are initiallpgedicular to each
other.

Table 3. Dependence and relative variation for the resonant orbit.

LCI FLI RLI SALI
max  0.00653987 692.198 5.77967e-15 0.00307465
min  -0.00075530 489.790 2.97609e-15 4.17417e-06
Acr  1.937 1.15 1.288 3.867

émae 81°5(26F5) 815 (17F.5) 17/T.5(35L.5) 8I.5(17T.5)
¢min 171°5(35F.5) 36.5(126.5) 17r.0(35F.0) 36.5(126.5)
A¢p 180° o0 180° o0

In Table 3 the maximum and minimum values for the resonanit arle
listed. Introducing the quantity

Aci =1 - logy (%) , (11)

also the measure of dependence was determinded. Accouadthg third line
of Table 3, we see that the SALI has the largest, and the FLtHesmallest
value which could already be observed in Fig. 4.

4. Summary

In this article a possible classification of the chaos detedechniques was
given, and four methods, namely the LCI, the FLI, the RLI damel $ALI were
briefly described in Section 2. These methods were compasieg the 2D
standard map. The efficiency of these techniques was testegplying them
to four different types of orbits. It was shown that all thesfonethods are
capable to distinguish between strongly chaotic and odderetion after ap-
proximately 100 iterations. To reveal the true nature of aklyechaotic orbit,
it turned out that the new methods are not superior to thesiclsmethod of
LCI: in short time interval they failed to properly classiflge orbit. This is
because the weakly chaotic orbit pretends regular behatwwa priori un-
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Figure 4. Variation of the Cls as a function of the initial directiontbe tangent vector(s) for
the resonant (top), non-resonant (middle) and chaoti¢qbntorbit.
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known time interval. The length of this time interval may lmmsidered as the
measure of chaos: the longer the interval the weaker thesaBao

Introducing the running average technique,m/i\d and theRLI can separate
between resonant and non-resonant orbits. This technmggertbt improve the
capabilities of LCl and SALI.

The sensitivity of the methods to the initial direction o&ttangent vector
€(0) was demonstrated and compared. It was shown for three typebits
that the Cls have extremum at the sagnevhich is the angle betweeit0) and
the z-axis. The LCI and RLI are periodic with, while the FLI and SALI are
periodic withz /2. With the definition ofAcy the dependence of the methods
were quantitatively described. The least sensitive is thig the most one is
the SALI.

In the future it is necessary to calculate these methods arge portion of
the phase space, and also to extend these calculations riaftbtdan dynam-
ical systems.
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