

Stability of P-Type Orbits in Exoplanetary systems

Barbara Funk

15 May 2002

Stability of P-Type Orbits in Exoplanetary systems

- Planets around binaries
- The calculations of planetary orbits
 - Modell
 - Initial conditions
- The results
 - Dependence from the eccentricity
 - Dependence from the inclination

Planets around binaries

- Possible planetary orbits in binaries
- Are there any planets found in binary systems

Planets around binaries

- Possible planetary orbits in binaries
- Are there any planets found in binary systems

The calculations of planetary orbits: Modell

- Description of calculation
- Integration of the orbit

Description of calculation

- The restricted three body problem
 - Two stars m₁, m₂ and a third body m₃=0
- The stars:
 - Mass ratio: $m_1=m_2$ $\mu=0.5$
 - Distance between the stars is one
- The planets:
 - Move in the gravitational field of the primaries
 - Follow the equations of motion of the restricted three body problem

Initial Conditions: The stars

- Different eccentricities
 - e = 0 0.5
 - Step = 0.05
- Two initial positions:
 - Apoapsis
 - Periapsis

Initial Conditions: The planets

- The planets start on circular orbits
- Different inclinations
 0° < i < 50°
 Step: 2.5°
- 4 initial positions
- Different distances from the barycentre

Integration of the orbit

- Each orbit was integrated until:
 - the planet escaped
 - the integration time limit (50000 periods of the primaries) was reached

Some examples: – Planetary orbits with inclination:

$$i = 0^{\circ}$$

 $i = 10^{\circ}$

Some examples: – Planetary orbits with inclination:

>> I

50

Some examples:

 Planetary orbits with inclination:

$$i = 0^{\circ}$$

Some examples:

 Planetary orbits with inclination:

- Border of stability
 - Absolut upper border
 - Over this border all orbits were stable
 - Absolut lower border
 - Under this border all orbits were unstable
 - Between those borders: chaotic region
- Dependence from the eccentricity
- Dependence from the inclination

Dependence from the eccentricity

- Comparison of the border of stability for i=0 with Holman-Wiegert
- The border of stability for different eccentricities and inclinations

- Comparison of the border of stability for i=0 with Holman-Wiegert
- The border of stability for different eccentricities and inclinations

2.0

2.2 2.4

2.6

2.8 3.0

3.2 3.4

Dependence from the inclination

• For e=0 and 0.05

- Stabel, unstabel and chaotic region
- Upper und lower border of stability
- Escape times:
 - For e=0
 - For e=0.05

Dependence from the inclination

• For e=0 and e=0.05

- Stabel, unstabel and chaotic region
- Upper und lower border of stability
- Escape times
 - For e=0
 - For e=0.05

• For e=0

- Stabel, unstabel and chaotic region
- Upper und lower border
 of stability
- Escape times
 - For e=0
 - For e=0.05

0.00 0.02 0.04

0.06 0.08 0.10 0.12

0.00

0.02

0.06

0.10

• For e=0

- Stabel, unstabel and chaotic region
- Upper und lower border of stability
- Escape time:
 - For e=0
 - For e=0.05

0.00

	0.00
<u>.</u>	0.02
1	0.04
	0.06
1	0.08
1	0.10
C.	0.12

Conclusions

- Lower and upper border decrease slightly with the inclination
- Increase from the border of stability with e independent from the inclination
- Calculations for more values of the eccentricity and the inclination will be done